

FSDK
Programming Interface V2.5

 FSDK Programming Interface

2 ©| OSR Open Systems Resources, Inc.

© 2009 OSR Open Systems Resources, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any

form or by any means -- graphic, electronic, or mechanical, including photocopying, recording, taping, or

information storage and retrieval systems -- without written permission of:

OSR Open Systems Resources, Inc.

105 Route 101A Suite 19

Amherst, New Hampshire 03031

+1 (603) 595-6500

OSR, the OSR logo, “OSR Open Systems Resources, Inc.”, and “The NT Insider” are trademarks of OSR Open

Systems Resources, Inc. All other trademarks mentioned herein are the property of their owners.

Printed in the United States of America

Document Identifier: UL219

LIMITED WARRANTY

OSR Open Systems Resources, Inc. (OSR) expressly disclaims any warranty for the information presented

herein. This material is presented “as is” without warranty of any kind, either express or implied, including,

without limitation, the implied warranties of merchantability or fitness for a particular purpose. The entire

risk arising from the use of this material remains with you. OSR’s entire liability and your exclusive remedy

shall not exceed the price paid for this material. In no event shall OSR or its suppliers be liable for any

damages whatsoever (including, without limitation, damages for loss of business profit, business

interruption, loss of business information, or any other pecuniary loss) arising out of the use or inability to

use this information, even if OSR has been advised of the possibility of such damages. Because some

states/jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental

damages, the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS

This material is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is

subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Right in Technical Data and Computer

Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer

Software--Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is OSR Open Systems Resources,

Inc. Amherst, New Hampshire 03031.

 FSDK Programming Interface

3 ©| OSR Open Systems Resources, Inc.

INTRODUCTION... 8

Executive Overview ... 8

Conventions .. 8

Status .. 9

CHANGES IN THE V2.5 RELEASE .. 10

Overview ... 10

Generic Lock Package .. 10

Parallel Locking .. 10

Impact on FSDK-based File Systems ... 10

COMMON DEVELOPMENT ISSUES .. 11

Overview ... 11

Handles and Handle Management ... 11

Accessing the IRP ... 12

Managing Upcalls .. 12

Caching .. 13

Drive Letter Management .. 14

Locking Considerations .. 14

Attribute Operations ... 14

FSDK SUPPORT INTERFACE ... 15

Overview ... 15

Wrapper Support Routines .. 15

OwAllocateSDBuffer ... 16

OwDeregister ... 17

OwDisableFileCache ... 18

OwDisableVolumeCache .. 19

OwEnableFileCache .. 20

OwEnableVolumeCache ... 21

OwFlushCache .. 22

OwGetCharacteristics ... 24

 FSDK Programming Interface

4 ©| OSR Open Systems Resources, Inc.

OwGetDirectorySearchString .. 25

OwGetFsdHandleForFileObject ... 26

OwGetMediaDeviceObject ... 27

OwGetPseudoDeviceObject .. 28

OwGetTopLevelIrp ... 29

OwIoControl ... 30

OwMediaRead ... 31

OwMediaWrite .. 32

OwNotifyDirectoryChange .. 33

OwPostWork .. 35

OwPurgeCache ... 36

OwRegister .. 38

OwSetReadAhead .. 41

OwSetWriteBehind .. 42

FSDK FILE SYSTEM DRIVER INTERFACE .. 43

Overview ... 43

Interface Routines ... 43

FS_ACCESS ... 44

FS_CHECK_LOCK ... 47

FS_CLEAR ... 48

FS_CONNECT .. 49

FS_CREATE ... 51

FS_DELETE .. 53

FS_DELETE2 .. 54

FS_DELETE3 .. 56

FS_DISCONNECT ... 57

FS_FLUSH ... 58

FS_FSCTRL .. 59

FS_GET_ATTRIBUTES .. 61

 FSDK Programming Interface

5 ©| OSR Open Systems Resources, Inc.

FS_GET_EA ... 63

FS_GET_NAMES .. 65

FS_GET_NAMES2 .. 66

FS_GET_SECURITY .. 67

FS_GET_UNC_VOLUME_ATTRIBUTES .. 69

FS_GET_VOLUME_ATTRIBUTES .. 70

FS_IOCTL .. 73

FS_LINK .. 75

FS_LOCK ... 76

FS_LOOKUP .. 78

FS_LOOKUP_BY_ID ... 80

FS_LOOKUP_BY_OBJECT_ID ... 81

FS_LOOKUP_PATH .. 82

FS_MOUNT... 84

FS_QUERY_PATH .. 85

FS_READ... 86

FS_READ_DIRECTORY ... 88

FS_READ_DIRECTORY2 ... 90

FS_READ_DIRECTORY3 ... 93

FS_READ_STREAM_INFORMATION ... 96

FS_RELEASE .. 97

FS_REMOVE_SHARE_ACCESS .. 98

FS_RENAME ... 99

FS_RENAME2 ... 101

FS_SET_ACCESS_MODE .. 103

FS_SET_ATTRIBUTES ... 105

FS_SET_EA .. 107

FS_SET_LENGTH ... 108

FS_SET_SECURITY ... 109

 FSDK Programming Interface

6 ©| OSR Open Systems Resources, Inc.

FS_SET_VOLUME_ATTRIBUTES ... 111

FS_SHUTDOWN .. 112

FS_UNC_ROOT ... 113

FS_UNLOCK .. 114

FS_UNMOUNT .. 115

FS_UPDATE_SHARE_ACCESS ... 116

FS_VERIFY .. 117

FS_WRITE ... 118

OPERATIONS REQUIREMENTS... 120

Overview ... 120

DATA STRUCTURES ... 123

Overview ... 123

FS_VOL_HANDLE ... 123

FS_FILE_HANDLE .. 123

FS_LOCK_HANDLE .. 123

FS_DELETE3_EXTENDED_INFO ... 123

FS_DIRECTORY_ENTRY ... 124

FS_DIRECTORY_ENTRY2 ... 124

FS_DIRECTORY_ENTRY3 ... 125

FS_FILE_ATTRIBUTES ... 125

FS_GET_NAMES2_EXTENDED_INFO ... 126

FS_STREAM_ENTRY ... 126

FS_VOL_ATTRIBUTES ... 126

FS_EXTENDED_VOL_ATTRIBUTES ... 127

File Types .. 127

File Attributes .. 127

Volume Attributes ... 127

FS_OPERATIONS .. 128

OW_WORK .. 131

 FSDK Programming Interface

7 ©| OSR Open Systems Resources, Inc.

WRAPPER IOCTL INTERFACE ... 132

Overview ... 132

OW_FSCTL_MOUNT_PSEUDO .. 132

OW_FSCTL_MOUNT_PSEUDO2 .. 132

OW_FSCTL_DISMOUNT_PSEUDO ... 133

OW_FSCTL_PSEUDO_VOLUME_READ .. 133

OW_FSCTL_PSEUDO_VOLUME_WRITE ... 133

OW_FSCTL_INIT ... 134

OW_FSCTL_ENUM ... 134

OW_FSCTL_CONNECT .. 134

OW_FSCTL_DISCONNECT ... 135

OW_FSCTL_GETCONNECTIONS .. 136

OW_FSCTL_GET_FULL_CONNECTIONS ... 136

INDEX .. 137

 FSDK Programming Interface

8 ©| OSR Open Systems Resources, Inc.

INTRODUCTION

Executive Overview
This is the Interface Definition provided as part of the OSR Open Systems Resources, Inc. File Systems

Development Kit (FSDK). As such, this guide serves as the principal definition of the interface to use when

implementing a File System Driver with the File Systems Wrapper provided as part of the OSR FSDK.

Conventions

In this document, we have adopted the following conventions:

We will use the name “Windows” when referring to Windows 2000, Windows XP, Windows Server 2003 or

Windows Vista. This release of the FSDK will support Windows 2000, Windows XP, Windows Server 2003

and Windows Vista. If your file system does not rely upon O/S specific features, it should be binary

compatible with the three separate versions of the FSDK wrapper, although the FSDK Wrapper library will

differ between the systems.

Parameters to functions are shown in italics. The names used are intended to be demonstrative of what a

given parameter represents.

We refer to the OSR-provided FSDK library as the Wrapper.

We refer to the file system specific code as the FSD (for “File System Driver”).

In naming the various functions, those with an FS_ prefix are routines that are to be provided by the FSD as

entry points to be called by the Wrapper. The names used are those of their actual type declaration. The

headers we have used are intended to be descriptive of the function provided by the given FSD entry point.

Routines beginning with Ow are provided by the OSR Wrapper and are intended for use by the FSD when

using Wrapper-provided services.

The general model for all operations is to describe the entry point, the parameters, and the general function

of the operation, as well as a general discussion of the potential return parameters.

Finally, we note the status of a particular interface call, that is, if implementing the function in the FSD is

optional or mandatory.

 FSDK Programming Interface

9 ©| OSR Open Systems Resources, Inc.

Status
While every attempt has been made to ensure that the information is correct in every detail, the nature of

the complex technical material herein may result in errors or inconsistencies. As they are found and brought

to our attention, this information will be revised and updated. We strongly encourage anyone using this

information to send us their questions or suggestions for improvements. Updated versions will be made

available from time to time via the normal support channels: either as part of your update or via the OSR

secure FTP server, ftp://ftp.osr.com. Please contact OSR for information on obtaining an account on this

server.

Comments should be sent to fsdkbugs@osr.com. This mechanism ensures optimal response to any

problems or issues. Issues raised via any other channel may experience unnecessary delay times or even be

inadvertently overlooked. This describes the interface for the FSDK Wrapper. Fundamentally, the Wrapper

component of the FSDK is the core portion which implements file system functionality specific to the

Windows operating system.

 FSDK Programming Interface

10 ©| OSR Open Systems Resources, Inc.

CHANGES IN THE V2.5 RELEASE

Overview

The primary focus in FSDK V2.5 was to improve performance, notably in the area of parallel activity. Prior to

this version of the FSDK, a number of coarse-granularity locks were being used internally that effectively

made key operations largely serial in nature, leading to bottlenecks for some applications. Our goal was to

remove these bottlenecks by increasing parallel activity.

Generic Lock Package

Our first task was to improve the internal locking behavior of the FSDK, which was supported by the generic

lock package. This package provides an infrastructure for tracking all locks used by a given thread within the

FSDK and enforces a locking hierarchy. Such a strict ordering model allowed us to change the internal FSDK

locking and ensure that it was done so in a deadlock free fashion. Any problems observed will immediately

cause the FSDK to halt and report the issue, providing valuable information about the current lock state.

Generally, bug reports for lock issues that report the current call stack and the debug output (the lock list

printed just before the breakpoint) are sufficient for us to debug any specific issues that you might observe.

Parallel Locking
Internally, the FSDK now uses a parallel table of locks to protect its internal file control block (FCB) lookup

table. Correctly supporting this involves calling into your FSD to obtain a handle, acquiring the correct lock,

calling into your FSD a second time to ensure the file handle has not changed and then locating the correct

cached FCB data structure (if the handle has changed, the FSDK will acquire the correct lock for the new

handle and repeat this process.) Accordingly, you may find it is performant to cache information about the

last file looked up in a given directory.

Impact on FSDK-based File Systems
These revisions do not change the FSDK interface into the file system. Rather, they change the behavior

characteristics of the FSDK and how the FSDK interacts with your file system. Where previously you would

have seen serialized activity in your FSD, now you will observe potentially parallel activity within your file

system driver.

These performance improvements should allow you to further tune the performance of your own file

system products. While this will benefit all of our customers, we anticipate the greatest gains will be

observed by our customers whose products are used in high end workstation and all server environments.

The increased levels of concurrent behavior now present throughout the FSDK, may uncover latent race

conditions or other bugs within your FSD. Thus, for those moving their FSD to FSDK V2.5, we strongly

encourage you to budget additional time for testing/validation, particularly for parallel file activity.

 FSDK Programming Interface

11 ©| OSR Open Systems Resources, Inc.

COMMON DEVELOPMENT ISSUES

Overview
We have attempted to codify and discuss issues that commonly arise when using the FSDK for development.

Please note that while we have attempted to identify these common issues this list should not be

considered as definitive. Indeed, our experience is that each customer utilizes the FSDK in a slightly

different fashion and as a result each customer has unique issues.

Handles and Handle Management
Perhaps one of the most confusing issues with respect to the FSDK is the use of “handles”. Because the

FSDK allows upcalls using these handles, the FSDK internally maintains lookup tables that are indexed by

handle.

While this approach seems simple, it has some unfortunate side effects.

First, it requires that handles be unique. Otherwise, when we receive a call from a file system to perform an

operation we do not know precisely what is required (imagine a call to change caching characteristics, for

example.)

While uniqueness might seem to be a simple property, it turns out to be considerably more complicated,

mostly in the “edge condition” cases. For example, when a user performs a forced dismount or forced

disconnection, the FSDK must continue to maintain sufficient state to manage calls from the application

programs (even though the backing file system is no longer present.) Accordingly, these handles (which are

now released from the perspective of the file system) are still active and in use (from the perspective of the

FSDK.) Until the files are closed, the FSDK must continue to maintain that state.

Over the development cycles of the FSDK we have strived to “clean up” all of these edge cases so that file

handles can be safely reused. However, volume handles are not safe for reuse. Thus, we strongly suggest

that you attempt not to reuse them whenever possible.

Typically, a file system uses nothing more than a pointer structure (an address as it were) for tracking these

handles. This approach, while simple, does not lend itself well to preventing handle re-use. A simple

approach that substantially minimizes the likelihood of handle re-use is to exploit the nature of the

Windows memory allocator. As documented, the memory allocator never allocates addresses with the low

three bits set. Thus, a simple scheme that greatly minimizes the likelihood of handle re-use is to maintain a

global variable within your driver. Each time you allocate a new volume handle, you increment that global

value, OR the low three bits into your handle (the address returned by the memory allocator) and return

that result as the handle to the FSDK.

Then, when the FSDK calls your file system using that handle, you mask off the low three bits and use the

corresponding address.

Note: this behavior for the memory allocator is documented in the Device Driver Kit and is architecturally

required for some (no longer supported) hardware platforms (due to alignment constraints on 64-bit data

 FSDK Programming Interface

12 ©| OSR Open Systems Resources, Inc.

value access.) While the reasons for this have been eliminated, this restriction is sufficiently ingrained in the

operating system that it can be used reliably.

Accessing the IRP

In earlier versions of the FSDK, we made the IRP available during the IRP_MJ_CREATE processing. As of V2.0

of the FSDK, we store the IRP in thread local storage so that your file system may identify and extract

information from the IRP that is currently being processed by the FSDK. In cases where multiple IRPs are

being processed, the FSDK will return the last IRP initiated. For example, it is common for an

IRP_MJ_CLEANUP to cause an IRP_MJ_CLOSE to occur with respect to another file object. If this requires a

call into your file system, the FSDK will provide you with the IRP_MJ_CLOSE.

This feature is only partially implemented. If you have specific cases that have not yet

been converted to this new model, advise us and we will prioritize the conversion of that

portion of the FSDK to include this feature.

In addition to the OwGetTopLevelIrp API, we have also introduced a separate filtering mechanism. In this

model, you register callback functions which are called as each IRP arrives into the FSDK and again just

before the FSDK completes the I/O request. Our goal was to eliminate the need for the use of a file system

filter driver in conjunction with the FSDK.

The general convention for FSDK-style filtering is:

 If your dispatch function returns anything other than STATUS_SUCCESS, the FSDK will assume

that the I/O operation has been “claimed” and it will not be processed by the FSDK. Thus, your

file system is responsible for processing and completing the request.

 If your completion function returns STATUS_MORE_PROCESSING_REQUIRED then the FSDK will

not complete the request. Thus, your file system is responsible for processing and completing

the request.

We note that if your file system “claims” the I/O request in a dispatch function, the FSDK will not provide a

callback for completion processing (this is because your file system will be performing the completion, not

the FSDK.)

Most customers using the FSDK will not find it necessary to utilize this functionality. If you do wish to use

this functionality, please make sure that you communicate with the OSR support team to ensure your usage

is fully supported during the development cycle.

Managing Upcalls

Calling from your file system back into the FSDK is one of the most complicated functions that you can

perform. The FSDK itself must maintain and control serialization in order to ensure correct (deadlock-free)

behavior. The upcalls can, in turn, trigger additional calls down into your file system.

 FSDK Programming Interface

13 ©| OSR Open Systems Resources, Inc.

Thus, when using upcalls you must take into account:

 FSDK Locking state. In general, it is safe to call back into the FSDK to perform operations on the

same file handle, but not to perform operations on a different file handle. Otherwise, you will

introduce lock cycles (which cause deadlocks under the right circumstances). Although we have

gone to great lengths to avoid deadlocks, in general it is not good practice to call back into the

FSDK to perform operations that change the state of a file/directory/volume.

 Reentrancy state. Some calls into your file system are not safe to use for upcalls. The notable

examples of this would be FS_READ and FS_WRITE because these operations can be performed

as part of page fault processing and/or at high priority. For example, I/O operations cannot be

completed when the system is running at APC_LEVEL – and there are some paging I/O

operations that run at APC_LEVEL to eliminate reentrancy.

 File System Locking State – as we noted previously, the FSDK may perform operations that

trigger a call back into your file system. If this occurs, you will need to ensure that this does not

cause a deadlock situation. Accordingly, you must either use re-entrant locks, such as

ERESOURCES, thread level state tracking, or some other mechanism for managing reentrancy.

Caching
There is considerable confusion about the effect of caching with respect to file systems using the FSDK.

Perhaps one of the most important considerations here is that caching causes the file to remain open for a

potentially indefinite period of time. Thus, normally, customers will report that their files are “never”

released. Normally, however, we find that the file is in fact open because it is still cached. Thus, the FSDK

must maintain the open reference. This in turn tells the file system that the file state must be tracked.

A file system that wishes to manipulate caching has a number of options when using the FSDK:

 Disable caching. While this will “solve” the problem, it yields very poor performance. Further,

the FSDK will cache certain files (essentially anything that is memory mapped) because the

alternative is sacrificing correct function.

 Disable write-back caching. In this case, all files are marked as “write through” and thus any

dirty data is flushed immediately. Clean (that is, unmodified with respect to the state in the file

system) data can be served from the cache.

 Invalidate caching as necessary. There are upcalls (OwFlushCache, OwPurgeCache) available for

invalidating the cache as necessary. These calls must be made when it is safe to perform such

upcalls. The FSDK, as of V2.0, greatly improves the ability of these calls to succeed by posting

portions of the necessary work, thereby eliminating lock contention issues that have been a

problem in earlier versions.

 Allow caching. This is certainly the simplest in terms of implementation, although it is not

suitable for all projects.

 FSDK Programming Interface

14 ©| OSR Open Systems Resources, Inc.

The ramifications of caching decisions in your file system are very important. This issue can impact the

design and implementation of your file system. If you have any questions about this, you should submit

them to fsdkbugs@osr.com as part of your normal support.

Drive Letter Management

Drive letter management turns out to be a complicated part of Windows. Further, the manner in which the

drive letters are managed for Windows 2000 and beyond has been completely changed.

In Windows 2000 and above, the drive letter management becomes more complicated because of the

introduction of support for dynamic (“plug and play”) devices. Thus, static assignment when the system is

initialized is insufficient. Windows 2000 introduces the “mount manager” in order to handle this. The APIs

necessary to communicate with the Mount Manager are documented in the Win32 API documentation (part

of the Platform SDK.)

Locking Considerations

In developing an FSD, careful consideration must be made to the locking being performed by the FSDK when

these wrapper support routines are called. Specifically, if an FSD is performing a call into a wrapper support

routine it is imperative that only operations on that file and the volume containing that file are performed.

This is due to the locking model supported within the FSDK wrapper itself. Because there is no way for the

FSDK to ensure locks are acquired in the proper order under all circumstances, an FSD must obey these

restrictions. A failure to do so will lead to internal FSDK deadlocks.

Attribute Operations

File attribute management and the associated calls for it make up a substantial part of the overall interface

exported by an FSD. These attributes include such things as security information, extended attributes, as

well as more traditional attribute information (such as archive, read-only, etc.)

For each of these operations we utilize a Get interface to retrieve the information from the FSD. The FSDK

Wrapper is then responsible for handling all presentation issues with respect to the system. The

corresponding Set interface is responsible for translating information from the system, formatting that

information into a canonical form, and providing it to the FSD for storage.

Thus, the general model here is that an FSD provides the storage for attributes, but does not provide the

interpretation of those attributes.

Of course, there are exceptions to this model. The OS has a set of “attributes” which are always assumed to

be available for each file (access, modify, and create times, data length, allocation size, etc.). These

attributes are manipulated via a get/set interface call for these “generic” attributes.

As with file data, the Wrapper may cache file and directory attributes to attempt to minimize the number of

times they are modified on-disk. Thus, when the Wrapper calls to the underlying FSD requesting

modification of an attribute, the FSD should write the attributes to persistent storage. Similarly, if these

values are externally modified the Wrapper cache must be purged using the appropriate functions.

mailto:fsdkbugs@osr.com

 FSDK Programming Interface

15 ©| OSR Open Systems Resources, Inc.

FSDK SUPPORT INTERFACE

Overview
This section describes, in alphabetical order, the support routines exported by the FSDK and available for

use within a file system driver.

Note that not all functions are required for all file systems. Some functions, such as those exported for

media file systems, are optional use and appropriate only to a specific type of file system.

Wrapper Support Routines

The Wrapper provides the routines described in this section for use in FSD implementations. In general, the

model for the Wrapper is not to isolate the FSD from the standard Windows DDK primitives. Thus, the

routines in this section are here to export file systems specific functionality being provided by the Wrapper

but requiring some form of access for the FSD.

 FSDK Programming Interface

16 ©| OSR Open Systems Resources, Inc.

OwAllocateSDBuffer

NTSTATUS

OwAllocateSDBuffer(

 IN ULONG BufferSize,

 OUT PVOID Buffer);

Parameters:

BufferSize — The size of the buffer needed for the Security Descriptor (SD)

Buffer — This is the allocated buffer, which can be NULL

Description:

This routine is used to allocate a security descriptor buffer.

There is no equivalent "free" because the FSDK will handle freeing the security descriptor.

Returns:

STATUS_SUCCESS - The buffer has been allocated

STATUS_INSUFFICIENT_RESOURCES - The buffer could not be allocated

STATUS_INVALID_BUFFER_SIZE - The buffer size was zero

STATUS_INVALID_PARAMETER-2 – The buffer is invalid

 FSDK Programming Interface

17 ©| OSR Open Systems Resources, Inc.

OwDeregister

NTSTATUS

OwDeregister(

 IN PVOID RegistrationHandle);

Parameters:

RegistrationHandle — The handle that was returned when the FSD was registered using OwRegister.

Description:

This indicates the FSD will no longer be using the Wrapper functions. Subsequent calls into the Wrapper will

fail.

This call will fail whenever there are outstanding references to the FSD or volumes being managed by the

FSD. Note that this call is optional and need not be used by an FSD. Typically, Windows file systems do not

dynamically unload.

This should not be called as part of shutdown processing – it is implemented to allow for the dynamic

unloading of FSDs. Use during shutdown processing may lead to unpredictable results.

For a network file system, this call must be made in the same process context as the original call to

OwRegister. This is because the Wrapper will register the FSD as a UNC provider; this in turn generates a

handle that must be valid when OwDeregister is called. To ensure the handle is valid, OwDeregister must be

called in the same process context (since handles are process context specific.)

Thus, if your network file system uses a service thread context to issue the OwRegister call, you must also

use the service thread context to issue the OwDeregister call. Alternatively, if you register in your FSD’s

DriverEntry routine, you must deregister in the system process context, typically using a system worker

thread. You can do this by creating a work item and using the Executive worker routines, such as

ExQueueWorkItem (documented in the Windows DDK.)

Returns:

STATUS_SUCCESS - the deregistration was completed successfully

STATUS_INVALID_DEVICE_REQUEST – there are still active volumes for this file system; deregistration is not

permitted

 FSDK Programming Interface

18 ©| OSR Open Systems Resources, Inc.

OwDisableFileCache

NTSTATUS

OwDisableFileCache (

 IN FS_FILE_HANDLE FileHandle,

 IN BOOLEAN DisableReadCaching);

Parameters:

FileHandle —The handle provided by the FSD to identify a given file or directory instance.

DisableReadCaching —If TRUE, read caching is disabled as well as write caching.

Description:

This routine is called by the FSD to indicate that data for this file (or directory) should not be cached. If the

DisableReadCaching variable is TRUE, no caching will be performed. If the DisableReadCaching variable is

FALSE, data may be cached, but all write operations will be done via a write-through mechanism.

This approach allows the FSD to tightly control the caching semantics on a per file basis.

The Wrapper is not allowed to cache attribute information for a file or directory that has caching disabled.

For a directory, the Wrapper is not allowed to cache the directory enumeration.

Returns:

STATUS_SUCCESS – the cache as been successfully purged and the file/directory is now marked so that it

cannot be cached.

STATUS_INSUFFICIENT_RESOURCES – a work item could not be allocated; the state of the file has not been

modified.

STATUS_INVALID_HANDLE – the handle passed in by the FSD is not valid; the state of the file has not been

modified.

STATUS_USER_MAPPED_FILE – the file in question is mapped by a user application and caching cannot be

disabled for this file; the state of the file has not been modified.

STATUS_OPLOCK_BREAK_IN_PROGRESS – the file in question may have had an outstanding oplock. A break

of that oplock is in progress. The state of the file has been updated to disable caching.

STATUS_RETRY – due to lock state within the FSDK, the operation could not be completed immediately. The

request has been posted and the FSD should retry this at a later time. The state of the file has not yet been

updated.

 FSDK Programming Interface

19 ©| OSR Open Systems Resources, Inc.

OwDisableVolumeCache

NTSTATUS

OwDisableVolumeCache (

 IN FS_VOL_HANDLE FsdVolumeHandle,

 IN BOOLEAN DisableReadCaching);

Parameters:

FsdVolumeHandle —The handle provided by the FSD describes a volume instance.

DisableReadCaching —If TRUE, read caching is disabled as well as write caching.

Description:

This routine is called by the FSD to indicate that data for any file on the specified volume should not be

cached. If the DisableReadCaching variable is TRUE, no caching will be performed. If the

DisableReadCaching variable is FALSE, data may be cached, but all write operations will be done via a write-

through mechanism.

These caching state changes are effective only for files opened subsequent to this change.

The Wrapper is not allowed to cache attribute information for a file or directory that has caching disabled.

For a directory, the Wrapper is not allowed to cache directory enumerations.

Returns:

STATUS_INVALID_HANDLE – the handle passed in by the FSD is not valid; the state of the volume has not

been modified.

STATUS_SUCCESS – future files opened on this volume will be marked so that their data and attributes may

not be cached.

 FSDK Programming Interface

20 ©| OSR Open Systems Resources, Inc.

OwEnableFileCache

NTSTATUS

OwEnableFileCache (

 IN PVOID FileHandle,

 IN BOOLEAN EnableWriteCaching);

Parameters:

FileHandle —The handle provided by the FSD to identify a given file or directory instance.

EnableWriteCaching —Indicates if write caching should be enabled, in addition to read caching.

Description:

This routine is called by the FSD to indicate that data for this file should be cached. If the

EnableWriteCaching variable is FALSE, data may be cached, but all write operations will be done via a write-

through mechanism.

This approach allows the FSD to tightly control the caching semantics on a per file basis.

The Wrapper is not allowed to cache attribute information for a file or directory that has caching disabled.

Returns:

STATUS_INVALID_HANDLE – the handle passed in by the FSD is not valid; the state of the file has not been

modified.

STATUS_SUCCESS – this file has been marked so that its data and attributes may be cached.

 FSDK Programming Interface

21 ©| OSR Open Systems Resources, Inc.

OwEnableVolumeCache

NTSTATUS

OwEnableVolumeCache (

 IN FS_VOL_HANDLE FsdVolumeHandle,

 IN BOOLEAN EnableWriteCaching);

Parameters:

FsdVolumeHandle —The handle provided by the FSD describes a volume instance.

EnableWriteCaching —Indicates if write caching should be enabled, in addition to read caching.

Description:

This routine is called by the FSD to indicate that data for any file on the specified volume should be cached.

If the EnableWriteCaching variable is TRUE, full data caching will be performed. If the EnableWriteCaching

variable is FALSE, data may be cached, but all write operations will be done via a write-through mechanism.

These caching state changes are effective only for files opened subsequent to this change.

The Wrapper is not allowed to cache attribute information for a file or directory that has caching disabled.

Returns:

STATUS_INVALID_HANDLE – the handle passed in by the FSD is not valid; the state of the volume has not

been modified.

STATUS_SUCCESS – future files opened on this volume will be marked so that their data and attributes may

be cached.

 FSDK Programming Interface

22 ©| OSR Open Systems Resources, Inc.

OwFlushCache

NTSTATUS

OwFlushCache (

 IN FS_FILE_HANDLE FileHandle,

 IN BOOLEAN Purge);

Parameters:

FileHandle —The handle provided by the FSD to identify a given file or directory instance.

Purge —If this value is TRUE, it indicates that the cache should be purged after the data has been written

back.

Description:

This routine would be called to request that the wrapper flush cached data for the given file. Thus, if there

is any dirty data stored in the VM system, it will be written back to the FSD (via the FS_WRITE entry point in

the FSD.)

This function, while available to any file system, is likely to be of use only to network file systems to aid in

their implementation of a cache consistency mechanism. Certain restrictions imposed by Windows are

inherent in the Wrapper support of this interface – notably, the inability of the VM system to purge cached

data for files mapped into a user address space.

The Purge parameter may be used to avoid a subsequent call to OwPurgeCache once the data has been

written back.

This routine returns STATUS_SUCCESS if the flush and purge (if requested) was successful. Otherwise it

returns an appropriate error code.

One very common error code is STATUS_USER_MAPPED_FILE that indicates the file is mapped into a user

application space and the caller specified that the file should be purged. In such cases, it is not possible for

the Wrapper to purge the data in the cache.

The purpose of this call is to allow an FSD to implement its own cache consistency protocol. Thus, typically,

this call will only be used by network file systems, rather than media file systems. However, it is permissible

for any file system to access this operation.

Calling this routine requires the Wrapper to discard any cached attribute information regarding the file.

Returns:

STATUS_SUCCESS - the flush operation was successful

STATUS_FILE_LOCK_CONFLICT – the operation could not be performed, as it was not possible to acquire the

necessary locks.

 FSDK Programming Interface

23 ©| OSR Open Systems Resources, Inc.

STATUS_USER_MAPPED_FILE - the purge could not be done because a user application has mapped the file.

 FSDK Programming Interface

24 ©| OSR Open Systems Resources, Inc.

OwGetCharacteristics

VOID

OwGetCharacteristics(

 IN PVOID MediaHandle,

 OUT PULONG DeviceType,

 OUT PULONG DeviceCharacteristics);

Parameters:

MediaHandle — The media-based handle provided to the FSD by the Wrapper.

DeviceType — Indicates the type of device.

DeviceCharacteristics — The characteristics of the media device.

Description:

This routine is used by the FSD to obtain information about the underlying media device. The DeviceType

corresponds to the type of device object (the value provided to IoCreateDevice) and the

DeviceCharacteristics correspond to the features of the device object (e.g., removable media). These

correspond exactly to the values described in the Windows DDK.

Returns:

None.

 FSDK Programming Interface

25 ©| OSR Open Systems Resources, Inc.

OwGetDirectorySearchString

NTSTATUS

OwGetDirectorySearchString (

 IN OUT PUNICODE_STRING SearchString);

Parameters:

SearchString —The specific regular expression being used for the current directory enumeration.

Description:

This call is provided to allow an FSD that does not support directory caching to retrieve additional

information about the directory enumeration operation currently active. Because this information is not

being cached, a subset of the actual directory may be returned to the FSDK Wrapper.

Note that an FSD that relies upon directory caching is prohibited from using this interface. Further, an FSD

that uses this interface must be able to handle standard file system regular expressions:

* - indicates zero or more characters

? – indicates exactly one character

“ – indicates the value “.”

> - indicates exactly one character, but may not be a space character either immediately before a “.” or as

the last character of the string.

< - indicates zero or more characters but may not be a space character either immediately before a “.” or as

the last character of the string.

The last two characters are unique to the Virtual Dos Machine (VDM) implementation on Windows and

indicate that DOS file name matching semantics are to be used. The double quotation mark is used to

distinguish a DOS period.

Returns:

STATUS_UNSUCCESSFUL – the request could not be honored because the string information was not valid

for this request.

STATUS_BUFFER_TOO_SMALL – the provided string buffer was not large enough to contain the search

string.

STATUS_ACCESS_VIOLATION – the provided string buffer was not valid.

STATUS_SUCCESS – the string has been returned in the provided buffer.

 FSDK Programming Interface

26 ©| OSR Open Systems Resources, Inc.

OwGetFsdHandleForFileObject

NTSTATUS

OwGetFsdHandleForFileObject (

 IN PFILE_OBJECT FileObject,

 IN OUT PFS_FILE_HANDLE FileHandle);

Parameters:

FileObject —A file object provided by the FSD to identify a given open application file instance.

FileHandle —The handle provided by the FSD to identify a given file instance.

Description:

This function is provided to allow an FSD developer to pass file handles directly to their FSD (via the I/O

control interface). When this is done, an FSD may use the Windows DDK function

ObReferenceObjectByHandle and pass the resulting file object to the FSDK Wrapper.

The FSDK Wrapper will extract the FSD’s internal handle from the file object and return it.

Returns:

STATUS_SUCCESS – the returned file handle is valid

STATUS_OBJECT_TYPE_MISMATCH – the provided object was not a file object

STATUS_INVALID_HANDLE – the provided file object was not created by the FSDK.

STATUS_ACCESS_VIOLATION – the FileHandle pointer was not valid. The FSD is responsible for allocating the

storage for this pointer.

 FSDK Programming Interface

27 ©| OSR Open Systems Resources, Inc.

OwGetMediaDeviceObject

NTSTATUS

OwGetMediaDeviceObject(

 IN PVOID MediaHandle,

 OUT PDEVICE_OBJECT *DeviceObject);

Parameters:

MediaHandle — The media-based handle provided to the FSD by the Wrapper.

DeviceObject — The Wrapper will set this to point to the underlying device object containing the specified

media volume.

Description:

This entry point is provided to allow an FSD to implement its own lower edge interface rather than relying

upon the Wrapper to implement it. This call, given a MediaHandle, returns a pointer to the device object

representing this volume. The FSD may then build its own I/O requests and send them to the underlying

media device driver.

Mixing the Wrapper implementation and the FSD implementation is possible but should be used with

extreme care as this may lead to unpredictable results.

Returns:

STATUS_SUCCESS – the returned device object is valid STATUS_INVALID_HANDLE – the provided media

handle is not a valid FSDK media handle.

 FSDK Programming Interface

28 ©| OSR Open Systems Resources, Inc.

OwGetPseudoDeviceObject

NTSTATUS

OwGetPsuedoDeviceObject(

 IN PVOID PseudoVolumeHandle,

 OUT PDEVICE_OBJECT *DeviceObject);

Parameters:

PseudoVolumeHandle— The pseudo volume handle provided to the FSD by the Wrapper.

DeviceObject — The Wrapper will set this to point to the underlying device object representing the

specified pseudo volume.

Description:

This entry point is provided to allow an FSD to implement its own lower edge interface rather than relying

upon the Wrapper to implement it. This call, given a PseudoVolumeHandle, returns a pointer to the device

object representing this volume. The FSD may then build its own I/O requests and send them to the

underlying device driver.

Mixing the Wrapper implementation and the FSD implementation is possible but should be used with

extreme care as this may lead to unpredictable results.

Returns:

STATUS_SUCCESS – the returned device object is valid

STATUS_INVALID_HANDLE – the PseudoVolumeHandle provided is not a valid FSDK pseudo volume handle.

 FSDK Programming Interface

29 ©| OSR Open Systems Resources, Inc.

OwGetTopLevelIrp

PIRP

OwGetTopLevelIrp

 (void);

Description:

This function may be used by the FSD to retrieve the IRP that is currently being processed. The FSD is

responsible for interpreting the contents of this value and handling it as appropriate.

Returns:

NULL – an IRP is not available

Any other value represents the IRP currently being processed

 FSDK Programming Interface

30 ©| OSR Open Systems Resources, Inc.

OwIoControl

NTSTATUS

OwIoControl(

 IN PVOID MediaHandle,

 IN ULONG IoctlCode,

 IN PVOID InputBuffer,

 IN ULONG InputBufferSize,

 OUT PVOID OutputBuffer,

 OUT ULONG OutputBufferSize);

Parameters:

MediaHandle — This is the media-based handle provided to the FSD by the Wrapper for use when calling

into the lower-edge interfaces.

IoctlCode — The identifier for the FSD-specific control operation.

InputBuffer — The input information (if any) for this control operation.

InputBufferSize — The size of the information contained within the input buffer.

OutputBuffer — The location where output information for this control operation should be written (if any).

OutputBufferSize — The amount of data contained within the output buffer.

Description:

This routine can be used by an FSD to send IOCTL codes to the underlying media device itself. The Wrapper

returns the results of those calls to the FSD. The Wrapper does not interpret the calls and the IOCTL values

supported by the underlying media device are entirely dependent upon the implementation of the media

device’s driver.

Normally this is used by an FSD to interact with its underlying media using standard disk storage IOCTLs,

including but not limited to:

IOCTL_GET_DRIVE_GEOMETRY

IOCTL_IS_WRITEABLE

IOCTL_CDROM_READ_TOC

IOCTL_STORAGE_GET_MEDIA_TYPES

FT_QUERY_SET_STATE

The FSD is responsible for allocating and freeing storage for both the input and output buffer.

Returns:

The status code returned by the underlying media device.

 FSDK Programming Interface

31 ©| OSR Open Systems Resources, Inc.

OwMediaRead

NTSTATUS

OwMediaRead(

 IN PVOID MediaHandle,

 IN LARGE_INTEGER Offset,

 IN ULONG Length,

 IN PMDL MdlChain);

Parameters:

MediaHandle — This is the media-based handle provided to the FSD by the Wrapper for use when calling

into the lower-edge interfaces.

Offset — This is the disk-based (volume) offset to be used when reading data from the media device.

Length — The amount of data to be read from the underlying volume.

MdlChain — This describes the MDL chain where the data read from disk should be placed.

Description:

The OwMediaRead routine is used by the FSD to transfer data from the disk into the specified MDL. The

Offset must be on a sector boundary, and the Length must be a multiple of the sector size.

Note that an MdlChain may be passed to this routine. Should the underlying device be unable to handle an

MDL chain, the I/O operations will be structured as a series of related I/O operations.

Returns:

STATUS_SUCCESS – The read was successful.

Other I/O errors as returned by the underlying subsystems.

OwMediaRead must not be used when accessing a paging file. This is because of the

special restrictions the operating system imposes when accessing a paging file.

 FSDK Programming Interface

32 ©| OSR Open Systems Resources, Inc.

OwMediaWrite

NTSTATUS

OwMediaWrite(

 IN PVOID MediaHandle,

 IN LARGE_INTEGER Offset,

 IN ULONG Length,

 IN PMDL MdlChain);

Parameters:

MediaHandle — This is the media-based handle provided to the FSD by the Wrapper for use when calling

into the lower-edge interfaces.

Offset — This is the disk-based (volume) offset to be used when writing data to the media device.

Length — The amount of data to be written to the underlying volume.

MdlChain — This describes the MDL chain where the data to be written to disk is located.

Description:

The OwMediaWrite routine is used by the FSD to transfer data to the disk from the specified MDL. The

Offset must be on a sector boundary, and the Length must be a multiple of the sector size.

As with the read case, the Wrapper is responsible for handling the MDL chain and ensuring that the

complete I/O operation has been satisfied.

Returns:

STATUS_SUCCESS – The write was successful.

Other I/O errors as returned by the underlying subsystems.

OwMediaWrite must not be used when accessing a paging file. This is because of the

special restrictions the operating system imposes for accessing paging files.

 FSDK Programming Interface

33 ©| OSR Open Systems Resources, Inc.

OwNotifyDirectoryChange

NTSTATUS

OwNotifyDirectoryChange (

 IN FS_FILE_HANDLE FileHandle,

 IN PUNICODE_STRING FullTargetName,

 IN USHORT TargetNameOffset,

 IN PUNICODE_STRING StreamName,

 IN PUNICODE_STRING ParentName,

 IN ULONG FilterMatch);

Parameters:

FileHandle —The file handle, upon which we are operating. This file handle uniquely identifies the directory

whose contents have changed.

FullTargetName —The path name of the file within the directory that changed.

TargetNameOffset —The offset in the FullTargetName to the file name component of the name.

StreamName —This is optional and indicates the stream name if it was a stream of the given file that

changed.

ParentName —This is optional and indicates the name of the DIRECTORY that changed (for multi-linked

directories)

FilterMatch —This indicates what changed. The FSD passes one or more of the values listed below into

OwNotifyDirectoryChange so the FSDK can tell the operating system what has happened to the specified

file.

FILE_NOTIFY_CHANGE_FILE_NAME

FILE_NOTIFY_CHANGE_DIR_NAME

FILE_NOTIFY_CHANGE_NAME

FILE_NOTIFY_CHANGE_ATTRIBUTES

FILE_NOTIFY_CHANGE_SIZE

FILE_NOTIFY_CHANGE_LAST_WRITE FILE_NOTIFY_CHANGE_LAST_ACCESS

FILE_NOTIFY_CHANGE_CREATION

FILE_NOTIFY_CHANGE_EA

FILE_NOTIFY_CHANGE_SECURITY

 FSDK Programming Interface

34 ©| OSR Open Systems Resources, Inc.

FILE_NOTIFY_CHANGE_STREAM_NAME

FILE_NOTIFY_CHANGE_STREAM_SIZE

FILE_NOTIFY_CHANGE_STREAM_WRITE

Description:

This call, provided for multi-initiator file system implementations, provides a mechanism whereby the FSD

can notify the wrapper of an external event which triggers an FSD change. In other words, when a change to

the underlying file system occurs outside the scope of the FSDK this call may be used to indicate a change

has occurred in the specified directory.

As a side effect of this call, any directory information that is cached is also discarded.

Note that if the file system in question supports hard links, each directory in use to access this file will

receive a separate directory change notification.

Returns:

STATUS_SUCCESS – the directory change notification has been successfully registered.

STATUS_INVALID_DEVICE_STATE – this call was made at IRQL > PASSIVE_LEVEL

STATUS_INVALID_HANDLE - the file handle provided was not valid

STATUS_NOT_A_DIRECTORY - not a directory

STATUS_INSUFFICIENT_RESOURCES – not enough memory

 FSDK Programming Interface

35 ©| OSR Open Systems Resources, Inc.

OwPostWork

VOID

OwPostWork(

 IN POW_WORK WorkToDo);

Parameters:

WorkToDo — The work to perform, specified by calling the desired function within this parameter.

Description:

The OwPostWork routine may be used by an FSD to request that an FSD-provided function be called in a

worker thread to perform a background operation. This will be accomplished by using one of the FSDK

internal work queues. The WorkToDo will be described using the OW_WORK structure.

This interface provides an alternative to system queues.

Returns:

None.

 FSDK Programming Interface

36 ©| OSR Open Systems Resources, Inc.

OwPurgeCache

NTSTATUS

OwPurgeCache (

 IN FS_FILE_HANDLE FileHandle);

Parameters:

FileHandle —The handle provided by the FSD to identify a given file or directory instance.

Description:

This routine is called by the FSD to indicate that any cached data for this file (or directory) should be purged.

This call may be made by any FSD. Typically it is used for:

 Implementing a distributed cache coherency protocol, such as in the case of a network file

system or shared media (SAN) file system.

 To ensure that a file is released because as long as there are VM references to the file, the FSDK

cannot release the file handle.

 To implement other policy of the file system that requires the data for this file is discarded. For

example, a file system that supports encryption or compression might allow modification of

both forms of the file. Thus, a change to one form of the data would require that the other

form of the data be discarded.

Please note that the implementation of this functionality by the Wrapper is subject to restrictions placed on

purging user-mapped files by the Windows VM system implementation. Thus, a request to purge a file may

fail because it is not possible to discard the VM references to the file.

Note that the FSDK does not implement a distributed cache coherency protocol, although it does implement

a cache coherency protocol (consistent with existing Windows file systems) on the same system. Thus, it is

the responsibility of the FSD to implement any necessary cache consistency protocol.

It is important to note that Windows does not guarantee cache coherency between non-cached I/O and

memory mapped I/O. Thus, it is possible to observe certain race conditions in updating the data. In this

case, the behavior of the system is “last writer wins”. This is not a function of the FSDK. Instead, it is an

operational restriction of the Windows virtual memory system.

Calling this routine requires the Wrapper to discard any cached attribute information it has stored regarding

this file. Typically, this will result in a subsequent release of the file handle, although that is not guaranteed.

Note that for a directory this will purge any cached directory information (such as the directory

enumeration.)

Returns:

STATUS_SUCCESS – the cache has been successfully purged.

 FSDK Programming Interface

37 ©| OSR Open Systems Resources, Inc.

STATUS_INSUFFICIENT_RESOURCES – a work item could not be allocated.

STATUS_INVALID_HANDLE – the handle passed in by the FSD is not valid.

STATUS_USER_MAPPED_FILE – the file in question is mapped by a user application and the cache for this file

cannot be purged.

STATUS_OPLOCK_BREAK_IN_PROGRESS – the file in question may have had an outstanding oplock. A break

of that oplock is in progress.

STATUS_RETRY – due to lock state within the FSDK, the operation could not be completed immediately. The

request has been posted and the FSD should retry this at a later time.

 FSDK Programming Interface

38 ©| OSR Open Systems Resources, Inc.

OwRegister

NTSTATUS

OwRegister(

 IN PDRIVER_OBJECT FsdDriverObject,

 IN PUNICODE_STRING RegistryPath,

 IN ULONG VersionNumber,

 IN FS_TYPE FsdType,

 IN PFS_OPERATIONS FsdOperations,

 OUT PVOID *RegistrationHandle);

Parameters:

FsdDriverObject — This is the driver object passed to the FSD in its DriverEntry routine.

RegistryPath — This is the registry path provided to the FSD in its DriverEntry routine. Parameters

associated with this FSD will be stored under this key and will be read by the Wrapper.

VersionNumber — The wrapper version number that the FSD expects to be supported.

FsdType — Indicates the type of file system being registered with the Wrapper.

FsdOperations — These are file system operations that are supported by this FSD. Entries not supported

are set to zero within this table.

RegistrationHandle — A handle to be used by the FSD when deregistering with the Wrapper library.

Description:

This entry point must be used by the FSD to register with the Wrapper library itself. The FSD provides

versioning information and if the Wrapper is incompatible with the version specified, the registration

request will be rejected.

The RegistrationHandle returned by the Wrapper may be used to deregister this FSD with the Wrapper.

The FsdType is structured to consist of a major file system type and then a set of characteristics for each file

system. The major types, along with their characteristic are:

1. Media file system (OW_FS_TYPE_MEDIA)

Media file systems minor types, representing the characteristics, are:

Disk file system (OW_FS_TYPE_MEDIA_DISK)

Tape file system (OW_FS_TYPE_MEDIA_TAPE)

CD ROM file system (OW_FS_TYPE_MEDIA_CDROM)

At least one of these minor types must be specified in addition to OW_FS_TYPE_MEDIA for media file

systems. Multiple options may also be specified by an FSD. These values are specific to the type of

 FSDK Programming Interface

39 ©| OSR Open Systems Resources, Inc.

media on which the file system might be stored. For any media type specified as part of the registration

operation, the FSD may be asked to mount the given media.

2. Network file system (OW_FS_TYPE_NETWORK)

Network file systems minor types, representing the characteristics, are:

 Named pipe supporting file system (OW_FS_TYPE_NETWORK_NAMED_PIPE)

 Mail slot supporting file systems (OW_FS_TYPE_NETWORK_MAILSLOT)

The named pipe information is not used in this release and is reserved for future use.

Any combination of options is supported. Minor types are not required for network file systems. At

present, the Wrapper does not implement named pipe support.

3. Pseudo file system (OW_FS_TYPE_PSEUDO)

The FsdOperations vector contains key information about the entry points implemented by the FSD that in

turn may be called by the Wrapper. Any unused entry must be set to zero.

Note that the Wrapper will initialize the FsdDriverObject as a result of this call. An FSD that modifies the

FsdDriverObject’s dispatch entry table or Fast I/O table can lead to unpredictable results when using the file

system.

The RegistrationHandle should be used by the FSD in any subsequent call to OwDeregister.

The Wrapper will create a named device object and symbolic link in the Win32 name space using the name

provided by the registering FSD. If this name conflicts with an existing device object or symbolic link the

registration call will fail. These named device objects may be subsequently used by custom utilities

attempting to interact with the FSD.

Thus, for a Network file system, if the name specified in the FsdOperations vector were “MyFsd”, the

wrapper would create a device object called “\Device\MyFsd” and a symbolic link called

“\DosDevices\MyFsd”. For a Media file system, we create the name at the top level of the tree.

Returns:

STATUS_SUCCESS - the FSD has been successfully registered with the Wrapper.

STATUS_INVALID_DEVICE_REQUEST - indicates that the Wrapper was loaded incorrectly.

STATUS_REVISION_MISMATCH - indicates that the FSD being registered is not compatible with the Wrapper.

STATUS_INVALID_PARAMETER_4 - indicates the FsdType parameter is not one of the valid file system types

STATUS_INSUFFICIENT_RESOURCES - memory allocation failed within the Wrapper

STATUS_ACCESS_VIOLATION - The FsdOperations vector passed to the Wrapper pointed to invalid memory.

 FSDK Programming Interface

40 ©| OSR Open Systems Resources, Inc.

STATUS_OBJECT_NAME_COLLISION – The FSD name specified in the FsdOperations vector conflicted with

the name of an existing device object or symbolic link

 FSDK Programming Interface

41 ©| OSR Open Systems Resources, Inc.

OwSetReadAhead

VOID

OwSetReadAhead (

 IN FS_FILE_HANDLE FileHandle,

 IN UCHAR NumberOfPages);

Parameters:

FileHandle —The handle provided by the FSD to identify a given file instance.

NumberOfPages —Indicates the number of PAGE_SIZE pages to use as the read-ahead value.

Description:

This routine may be called by the FSD to set the read ahead size used by the Cache Manager when reading

in pieces of the file. Because this size may have profound effect on the overall performance of the file

system, this interface may be used by the FSD to control this characteristic.

The Wrapper will default to 64k. Note that even if a larger read-ahead value is set for a file, the VM system

in Windows restricts the paging operations to a maximum size of 64k.

This call may only be made for files and is ignored if called for directories.

This call is considered advisory for the Wrapper. That is, the Wrapper will use the indicated read-ahead size

as an indication (or hint) regarding read ahead behavior for the file system, but the actual read-ahead used

may vary from that amount to fit the current running state of the system.

Returns:

None.

 FSDK Programming Interface

42 ©| OSR Open Systems Resources, Inc.

OwSetWriteBehind

VOID

OwSetWriteBehind (

 IN FS_FILE_HANDLE FileHandle,

 IN UCHAR NumberOfPages);

Parameters:

FileHandle —The handle provided by the FSD to identify a given file instance.

NumberOfPages —Indicates the maximum number of PAGE_SIZE pages which can be kept in memory and

dirty.

Description:

This routine may be called by the FSD to set the write behind size used by the Cache Manager when doing

asynchronous writeback of the file. This size has profound effect on the caching policy of the FSD and this

interface allows the FSD to implement a very restrictive caching policy (forcing data back to disk whenever it

becomes dirty by setting the NumberOfPages to zero) or a more permissive strategy.

By default, the strategy implemented by the Wrapper will be very permissive. Thus, the threshold will be set

above the size of the cache – and the entire file may be cached in memory.

While this might sound like an unwise policy, it is important to remember that theWindows Cache Manager

implements a dirty data writeback policy anyway by writing 25% of the dirty data in the system back every

second. Thus, it should only take a few seconds for dirty file data to be written back.

Disabling this write behind feature will severely impair the performance of the system.

This call may only be made for files and is ignored if called for directories.

This call is considered advisory for the Wrapper. That is, the Wrapper will use the indicated write-behind

size as an indication (or hint) regarding write behind behavior for the file system, but the actual write-

behind used may vary from that amount to fit the current running state of the system.

Returns:

None.

 FSDK Programming Interface

43 ©| OSR Open Systems Resources, Inc.

FSDK FILE SYSTEM DRIVER INTERFACE

Overview
This section sets forth, in alphabetical order, the interface functions exported by a file system driver that will

be called from the FSDK in order to implement the functionality of a file system.

Interface Routines

The routines described in this section are exported by a file system driver that will be called from the FSDK in

order to implement the functionality of a file system.

Note that not all functions are required for all file systems. Please refer to the individual function

descriptions for additional information on whether or not the given function is appropriate or necessary for

your file system driver.

 FSDK Programming Interface

44 ©| OSR Open Systems Resources, Inc.

FS_ACCESS

NTSTATUS

(*FS_ACCESS)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PACCESS_STATE AccessState);

Status: Required Used if

Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle on which the access check is to be made.

AccessState — This contains all security information about the original caller of this request. The FSD is

responsible for updating this data structure.

Description:

If the FSD supports the FS_GET_SECURITY/FS_SET_SECURITY entry points, then standard Windows security

policies will be enforced for access to local file objects.

This entry point is intended to be used by FSDs that implement their own additional security policy. It will

be called when a file is opened for access.

Note that the Wrapper does not implement any additional security policy, other than the above-mentioned

optional support for standard Windows local file object security. Specifically, the Wrapper does no

enforcement of the “read-only” attribute which may be maintained on a file as it is the responsibility of the

FSD to define what portions of the file are “read-only” based upon the state of this bit, as well as to merge

the implementation of this very simple security with any other security policy implemented by the FSD.

The ACCESS_STATE data structure is defined in ntddk.h as part of the normal DDK environment. However,

for the purposes of discussion, we describe this entire structure:

 FSDK Programming Interface

45 ©| OSR Open Systems Resources, Inc.

typedef struct _ACCESS_STATE {

 LUID OperationID;

 BOOLEAN SecurityEvaluated;

 BOOLEAN GenerateAudit;

 BOOLEAN GenerateOnClose;

 BOOLEAN PrivilegesAllocated;

 ULONG Flags;

 ACCESS_MASK RemainingDesiredAccess;

 ACCESS_MASK PreviouslyGrantedAccess;

 ACCESS_MASK OriginalDesiredAccess;

 SECURITY_SUBJECT_CONTEXT SubjectSecurityContext;

 PSECURITY_DESCRIPTOR SecurityDescriptor;

 PVOID AuxData;

 union {

 INITIAL_PRIVILEGE_SET InitialPrivilegeSet;

 PRIVILEGE_SET PrivilegeSet;

 } Privileges;

 BOOLEAN AuditPrivileges;

 UNICODE_STRING ObjectName;

 UNICODE_STRING ObjectTypeName;

 } ACCESS_STATE, *PACCESS_STATE;

Typically, the FSD will only be interested in a subset of these fields:

PreviouslyGrantedAccess – the information about access that has ALREADY been granted to the caller of this

routine. The Windows Security system grants certain rights based upon the privileges of the caller, such as

traverse right (the ability to traverse through a directory as part of opening a subdirectory or file.)

The OriginalDesiredAccess field contains the original access rights requested by the caller.

The RemainingDesiredAccess field describes the access rights that have not yet been granted to the caller.

The FSD uses this field to determine if access can be granted and if it can, the PreviouslyGrantedAccess and

RemainingDesiredAccess fields are updated accordingly.

An ACCESS_MASK is divided into three distinct sections:

 GENERIC rights

 STANDARD rights

 SPECIFIC rights

There are four types of generic rights:

 GENERIC_READ – the ability to read data/attributes of the object

 GENERIC_WRITE – the ability to modify data/attributes of the object

 GENERIC_EXECUTE – the ability to “execute” the object

 GENERIC_ALL – all rights available for the given object

In addition, all Windows objects have a set of standard rights:

 DELETE – the ability to delete the object or something contained within the object

 READ_CONTROL – the ability to read control information about the object

 FSDK Programming Interface

46 ©| OSR Open Systems Resources, Inc.

 WRITE_DAC – the ability to modify the discretionary access controls on the object

 WRITE_OWNER – the ability to modify the “owner” field of the object

 SYNCHRONIZE – the ability to use the object for synchronization

In addition, any Windows object may have object-specific rights. For FILE_OBJECTs the specific rights are:

 FILE_READ_DATA - read data from the file

 FILE_LIST_DIRECTORY - list the contents of the directory

 FILE_WRITE_DATA - write data anywhere within the file

 FILE_ADD_FILE - add a new file to a directory

 FILE_APPEND_DATA - write data to the END of the file

 FILE_ADD_SUBDIRECTORY - create a subdirectory in the current directory

 FILE_READ_EA - read an EA from a file or directory

 FILE_WRITE_EA - change the EA for a file or directory

 FILE_EXECUTE - execute the file

 FILE_TRAVERSE - "cd" through the directory

 FILE_DELETE_CHILD - delete a subdirectory of a directory

 FILE_READ_ATTRIBUTES - read the attribute information for the file

 FILE_WRITE_ATTRIBUTES - modify the attribute information for the file

Windows relies upon mappings to convert the generic object rights into a set of standard and specific rights.

The creator of the object defines this mapping. The I/O Manager does this for FILE_OBJECTs. There is an

exposed interface for retrieving these mappings from the I/O Manager (IoGetFileObjectGenericMapping).

Note that these rights are dependent upon the type of “file” represented by the FILE_OBJECT.

Keep in mind that a FILE_OBJECT on Windows can represent any one of three things: a

“volume” of a file system, a directory, or a file.

Returns:

STATUS_SUCCESS – access is granted

STATUS_ACCESS_DENIED – access is refused

STATUS_NOT_IMPLEMENTED – use to indicate success in the case where both FS_ACCESS and

FS_GET/SET_SECURITY are supported by the FSD

 FSDK Programming Interface

47 ©| OSR Open Systems Resources, Inc.

FS_CHECK_LOCK

NTSTATUS

(*FS_CHECK_LOCK)(

 IN FS_FILE_HANDLE FileHandle,

 IN LARGE_INTEGER FileOffset,

 IN ULONG BufferSize,

 IN BOOLEAN Read);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided handle identifying the given file.

FileOffset — The first byte in the range to check.

BufferSize — The number of bytes to lock beginning at FileOffset.

Read — Indicates if the requested check should be done for a read operation (would conflict with exclusive

locks) or a write operation (would conflict with any locks.)

Description:

This routine is used by the FSDK to verify that a particular I/O operation is consistent with the locking state

of the given file. If this routine is not implemented, only locally maintained lock state is enforced.

Returns:

STATUS_SUCCESS – the operation is compatible with existing lock state

STATUS_FILE_LOCK_CONFLICT – the operation conflicts with existing lock state

 FSDK Programming Interface

48 ©| OSR Open Systems Resources, Inc.

FS_CLEAR

NTSTATUS

(*FS_CLEAR)(

 IN FS_FILE_HANDLE FileHandle,

 IN PLARGE_INTEGER FileOffset,

 IN PLARGE_INTEGER Length);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle against which this clear operation is being performed.

FileOffset — The first byte to be cleared.

Length — The number of bytes that should be zeroed.

Description:

This API is used to support sparse files. File systems that support sparse files may be able to eliminate some

(or all) of the allocated range (the amount that may be freed is a function of the allocation size, etc.)

Returns:

STATUS_SUCCESS – the file has been successfully cleared.

 FSDK Programming Interface

49 ©| OSR Open Systems Resources, Inc.

 FS_CONNECT

NTSTATUS

(*FS_CONNECT)(

 IN PWSTR RemoteName,

 IN UCHAR ConnectionType,

 OUT PFS_VOL_HANDLE FsdVolumeHandle,

 OUT PFS_FILE_HANDLE RootDirectoryHandle);

Status: Required Used if Present

 Media File Systems No No

 Network File Systems Yes Yes

 Pseudo File Systems No No

Parameters:

RemoteName — The UNC name to be used for the connection by the FSD. This is a null-terminated wide-

character string.

ConnectionType — Indicates the type of connection this connect request represents.

FsdVolumeHandle — The handle to be used by the Wrapper to identify this network share when

communicating with the FSD.

RootDirectoryHandle — The handle used to identify the root directory of this network share.

Description:

Logically, this routine performs the same functions for a network-based file system that the Mount

operation does for a media-based file system.

Functionally, this call should operate much like FS_MOUNT operates for media file systems.

One issue for a network file system, which is not an issue for a physical-media file system, is how to support

“multiple mounts” of the same remote drive. In this case, the Wrapper will handle this based upon the

behavior of the underlying FSD. If, as a result of a mount request, the underlying FSD returns an FsdVolume

handle which has already been returned the Wrapper will fail the attempt to re-mount that drive.

This allows an FSD to decide if it wishes to support this functionality or not: if it returns a new unique value

for FsdVolumeHandle and RootDirectoryHandle then the mount will be allowed. If it does not return a new

unique value for FsdVolumeHandle and RootDirectoryHandle then the FSDK will indicate to the caller that

the mount has failed. It will indicate that the drive is already in use (STATUS_DEVICE_ALREADY_ATTACHED.)

This allows a network provider to detect and handle this condition.

 FSDK Programming Interface

50 ©| OSR Open Systems Resources, Inc.

If an FSD returns a unique value for FsdVolumeHandle the value for RootDirectoryHandle should similarly be

unique. If they are not, the results of this operation are unpredictable.

Note: The Wrapper does not reference count the root directory. The root directory is

only released as part of a disconnect or dismount. Thus, whenever the disconnect is

handled, the root directory handle will be released regardless of the actual reference

count on the root directory handle.

Also, note that if your FSD returns the same FsdVolumeHandle to a connect request only a single disconnect

request will be received for that operation subsequently.

The ConnectionType is one of:

OW_CONNECTION_PRINTER

OW_CONNECTION_DISK

Future values may be defined to support additional types of connections.

The FSD is responsible for validating that the requested connection is acceptable for the given connection

type.

Returns:

STATUS_SUCCESS – the connect operation was successful

STATUS_INVALID_DEVICE_REQUEST – the requested connection is incompatible with the remote device

STATUS_OBJECT_NAME_EXISTS – the requested connection utilizes a drive letter that is already in use.

 FSDK Programming Interface

51 ©| OSR Open Systems Resources, Inc.

FS_CREATE

NTSTATUS

(*FS_CREATE)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN PWSTR FileName,

 IN PWSTR ShortFileName,

 IN ULONG FileType,

 OUT PFS_FILE_HANDLE NewFileHandle);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

DirectoryHandle — The FSD-provided directory handle against which the object is to be created.

FileName — The name of the new object to be created. This name is not permitted to contain an

embedded path and must be a new entry in the directory represented by DirectoryHandle.

ShortFileName – The alternate (8.3) file name for the file. If null, there is no alternate file name.

FileType — The type of object to create.

NewFileHandle — The FSD-provided file handle for the newly created file or directory.

Description:

This routine may be used to create a new file or directory within the existing directory specified by

DirectoryHandle. If a file or directory with the specified name already exists, the FSD should return an error.

The FileType field indicates what type of object to create. It is one of the following values:

OW_HANDLE_TYPE_FILE

OW_HANDLE_TYPE_DIRECTORY

OW_HANDLE_TYPE_SYMBOLIC_LINK

OW_HANDLE_TYPE_OTHER

If the create operation is successful, the new file or directory handle is returned in NewFileHandle. This file

handle must be valid for use in subsequent calls to the FSD until the Wrapper calls FS_RELEASE with that

handle.

 FSDK Programming Interface

52 ©| OSR Open Systems Resources, Inc.

If the FSD has set OW_FS_ATTR_SHORT_NAMES, the Wrapper generates the short file name by utilizing the

same name generation algorithm as NTFS. To validate that a name is unique, a series of lookup operations

are performed attempting to locate a unique file name. When a new unique file name is found, it will be

passed as part of this call. The FSDK serializes during the creation to ensure the short name does not collide

with any other short name. The wrapper will not generate a short file name, and the ShortFileName

parameter will be a null pointer, if the OW_FS_ATTR_SHORT_NAMES attribute is not set.

If the FSD has set OW_FS_ATTR_FSD_SHORT_NAMES, the wrapper will not pass in a short name, but will

expect the FSD to generate a valid 8.3 short name. The FSDK must be able to retrieve the valid short name

via the FS_GET_NAMES call.

Returns:

STATUS_SUCCESS – the create operation was successful

STATUS_OBJECT_NAME_EXISTS – the specified object already exists and cannot be created.

 FSDK Programming Interface

53 ©| OSR Open Systems Resources, Inc.

FS_DELETE

NTSTATUS

(*FS_DELETE)(

 IN FS_FILE_HANDLE FileHandle);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle that represents the file or directory being deleted.

Description:

This routine may be called to delete an existing file or directory. Note that unlike FS_DELETE2 and

FS_DELETE3, this entry point does not require a file or directory handle.

Upon a successful completion of this call, the specified FileHandle is no longer valid. That is, the Wrapper

will treat the handle as if an implicit call to FS_RELEASE has been made. If the underlying FSD fails a call to

delete, the FSDK will subsequently call FS_RELEASE on that file handle. Note that Windows applications will

not learn of the rejected delete as a result of failing this call because this operation is done when the file is

closed by the application and thus there is no mechanism for reporting this error back to the application.

This routine will not be supported in a future release of the FSDK. New file systems should use FS_DELETE3

and existing file systems should convert to FS_DELETE3 as soon as possible. An FSD should only provide

FS_DELETE or FS_DELETE2 or FS_DELETE3. If more than one delete routine is provided, the results are

undefined.

For more information, see FS_DELETE3.

Returns:

STATUS_SUCCESS – the delete operation was successful

 FSDK Programming Interface

54 ©| OSR Open Systems Resources, Inc.

FS_DELETE2

NTSTATUS

(*FS_DELETE2)(

 IN FS_FILE_HANDLE FileHandle,

 IN FS_FILE_HANDLE ParentDirectoryHandle,

 IN PWSTR FileName);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle that represents the file or directory being deleted.

ParentDirectoryHandle — The FSD-provided file handle that represents the directory containing the file or

directory being deleted.

FileName — The name of the instance of the file to be deleted in the specified directory.

Description:

This routine may be called to delete an existing file or directory. Note that unlike FS_DELETE this call also

specifies the containing directory and instance name that is being deleted. For file systems supporting hard

linked files this information is necessary to allow the FSD to identify the correct link to be deleted, not just

the correct file.

Note that under certain circumstances, the FSDK Wrapper may not be able to provide the name. In such a

case, only the FileHandle and ParentDirectoryHandle are provided, and the FileName is NULL. In such a

case, the FileHandle represents a directory.

It is a restriction of the FSDK that a directory cannot support more than a single link

to it. Because of this, the FileHandle and ParentDirectoryHandle are sufficient to

provide an unambiguous description of a directory being deleted.

Upon a successful completion of this call, the specified FileHandle is no longer valid. That is, the Wrapper

will treat the handle as if an implicit call to FS_RELEASE has been made. If the underlying FSD fails a call to

delete, the FSDK will subsequently call FS_RELEASE on that file handle. Note that Windows applications will

not learn of the rejected delete as a result of failing this call because this operation is done when the file is

closed by the application and thus there is no mechanism for reporting this error back to the application.

 FSDK Programming Interface

55 ©| OSR Open Systems Resources, Inc.

Returns:

STATUS_SUCCESS – the delete operation was successful

 FSDK Programming Interface

56 ©| OSR Open Systems Resources, Inc.

FS_DELETE3

NTSTATUS

(*FS_DELETE3)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PFS_DELETE3_EXTENDED_INFO ExtendedInformation);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle that represents the file or directory being deleted.

ExtendedInformation — Pointer to FS_DELETE3_EXTENDED_INFO structure containing information on file

to be deleted.

Description:

This routine may be called to delete an existing file, link, or directory. Note that unlike FS_DELETE this call

also specifies the containing directory, instance name and whether or not to release the handle of the file

that is being deleted. For file systems supporting hard linked files this information is necessary to allow the

FSD to identify the correct link to be deleted, not just the correct file.

Note that under certain circumstances, the FSDK Wrapper may not be able to provide the name. In such a

case, only the FileHandle and ParentDirectoryHandle are provided, and the FileName is NULL. In such a

case, the FileHandle represents a directory.

It is a restriction of the FSDK that a directory cannot support more than a single link

to it. Because of this, the FileHandle and ParentDirectoryHandle are sufficient to

provide an unambiguous description of a directory being deleted.

Upon a successful completion of this call, the specified FileHandle is no longer valid. That is, the Wrapper

will treat the handle as if an implicit call to FS_RELEASE has been made. If the underlying FSD fails a call to

delete, the FSDK will subsequently call FS_RELEASE on that file handle. Note that Windows applications will

not learn of the rejected delete as a result of failing this call because this operation is done when the file is

closed by the application and thus there is no mechanism for reporting this error back to the application.

Returns:

STATUS_SUCCESS – the delete operation was successful

 FSDK Programming Interface

57 ©| OSR Open Systems Resources, Inc.

FS_DISCONNECT

NTSTATUS

(*FS_DISCONNECT)(

 IN FS_VOL_HANDLE FsdVolumeHandle);

Status: Required Used if Present

 Media File Systems No No

 Network File Systems No Yes

 Pseudo File Systems No No

Parameters:

FsdVolumeHandle — The handle to be used by the Wrapper to identify this network share when

communicating with the FSD.

Description:

This routine is used to tear down an existing connection. It is the equivalent of an unmount in the media file

system case.

To disconnect a drive, the Wrapper relies upon the force level that was specified by the Network Provider

(see OW_FSCTL_DISCONNECT). When the disconnection is not forced, the Wrapper will attempt to flush all

outstanding dirty data back to the underlying file system. It will then purge all VM references to those files.

Operational experience indicates that this initial purge does not always succeed but that subsequent VM

activity will release all page references and the volume can be disconnected. During disconnection, all

remaining file handles will be released back to the underlying FSD. Finally, the root directory handle of the

FSD will be released and FS_DISCONNECT will be called to complete the operation.

Once this routine has returned successfully, the Wrapper will no longer use the FsdVolumeHandle for access

to the underlying file system.

Returns:

STATUS_SUCCESS – the disconnect operation was successful

 FSDK Programming Interface

58 ©| OSR Open Systems Resources, Inc.

FS_FLUSH

NTSTATUS

(*FS_FLUSH)(

 IN FS_FILE_HANDLE FileHandle);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle.

Description:

This routine is used to ensure that any FSD-cached information regarding the given file or directory has been

committed to disk.

Note that the Wrapper assumes no user-data was cached regarding the file or directory. Rather this is used

to ensure that any metadata associated with the file has been successfully written.

Note that if an FSD does no write-behind caching of FSD metadata, this entry point need not be supported.

Typically, there is little the Wrapper can do to recover from an error returned from this function. Thus, the

FSD should only return an error for an unrecoverable failure, such as an I/O error.

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

59 ©| OSR Open Systems Resources, Inc.

FS_FSCTRL

NTSTATUS

(*FS_FSCTRL)(

 IN FS_VOL_HANDLE FsdVolumeHandle,

 IN ULONG ControlCode,

 IN PVOID InputBuffer,

 IN ULONG InputBufferSize,

 IN PVOID OutputBuffer,

 IN ULONG OutputBufferSize,

 OUT PULONG BytesWritten,

 OUT PULONG BytesNeeded);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FsdVolumeHandle — The FSD-provided handle representing the volume to be used for this operation.

ControlCode — The identifier for the FSD-specific control operation.

InputBuffer — The input information (if any) for this control operation.

InputBufferSize — The size of the information contained within the input buffer.

OutputBuffer — The location where output information for this control operation should be written (if any).

OutputBufferSize — The size of the data contained within the output buffer. This field can be zero.

BytesWritten — The number of bytes written to the output buffer.

BytesNeeded — The number of bytes actually required in the output buffer to complete the operation.

Description:

This routine allows FSD-defined control information to be sent between external (application) programs and

the FSD. This can be used to implement statistics gathering, modify file system behavior, etc.

The Wrapper provides both the InputBuffer and OutputBuffer to the FSD. These buffers have been probed

for access and should be considered safe to access by the FSD without additional exception handlers or

probing required.

 FSDK Programming Interface

60 ©| OSR Open Systems Resources, Inc.

If the InputBuffer is too small to contain the necessary information, the FSD should return

STATUS_INVALID_PARAMETER. If the OutputBuffer is too small the FSD should return

STATUS_BUFFER_TOO_SMALL and set BytesNeeded to indicate the minimum sized buffer required.

Additionally, certain IOCTL values have been defined for use with the Wrapper. They are described in more

detail in the Wrapper IOCTL Interface section of this document. The FSD is free to implement and define

additional IOCTL values.

Returns:

STATUS_SUCCESS - the I/O Control operation completed successfully

STATUS_INVALID_PARAMETER - the input buffer was too small

STATUS_BUFFER_TOO_SMALL - the output buffer was too small

 FSDK Programming Interface

61 ©| OSR Open Systems Resources, Inc.

FS_GET_ATTRIBUTES

NTSTATUS

(*FS_GET_ATTRIBUTES)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PFS_FILE_ATTRIBUTES FileAtttributes);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

FileHandle — The FSD-provided file handle for which the attributes are being retrieved.

FileAttributes — The Wrapper-allocated buffer containing the general file attributes.

Description:

This routine is used to retrieve basic attributes associated with any file or directory stored by the FSD:

CreationTime - Indicates when the file was first created

LastAccessTime - Indicates the last time the file was accessed

LastModifiedTime - Indicates the last time the contents of the file were modified

Attributes – Standard Windows file attributes (read-only, hidden, system, archive, etc.)

LastByteWritten - Last byte in the file modified by the application program. It is the ValidDataLength

according to Windows and is <= ValidDataLength.

ValidDataLength - Last byte in the file that may be read. It is the "end of file" marker for the file and

<= DiskSize

DiskSize - Number of bytes actually allocated, independent of data size

LinkCount - Number of hard links associated with this file

FileID - Unique 64-bit file descriptor

The FileAttributes structure (FS_FILE_ATTRIBUTES) will be allocated by the Wrapper and need only be filled

in by the FSD. Time values are expressed as the count of 100-nanosecond intervals since January 1, 1601.

 FSDK Programming Interface

62 ©| OSR Open Systems Resources, Inc.

The FSD is free to define any or all of these fields to fit its own implementation requirements. Fields that are

not supported by the FSD should be set to zero.

The FileID field is defined by the FSD and is used by the Wrapper to support “open by file ID” by Windows

applications. This ID value must uniquely identify the file, although this value may be reused after the

system is rebooted. If this value is zero, the Wrapper will not support opening a file by ID.

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

63 ©| OSR Open Systems Resources, Inc.

FS_GET_EA

NTSTATUS

(*FS_GET_EA)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PVOID EABuffer,

 IN OUT PULONG EABufferSize);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle against which the EA is stored.

EABuffer — This buffer contains the extended attribute set for this file (if any).

EABufferSize — On input, this value is the size of the EABuffer allocated by the wrapper. On output, this

value indicates the size of the EABuffer returned to the Wrapper by the FSD.

Description:

This routine is used to retrieve the extended attribute information associated with the specified file or

directory. When the FSDK first calls the FSD with this routine, the EABuffer is passed in as a null pointer and

the EABufferSize is set to zero. If there is extended attribute information associated with the file or

directory, then the FSD will return return STATUS_BUFFER_OVERFLOW and the true size of the buffer

needed in EABufferSize. On the next call, the EABuffer will point to the buffer containing a

FILE_FULL_EA_INFORMATION structure and EABufferSize will indicate the required size, as returned by the

first call. The FILE_FULL_EA_INFORMATION structure (from ntddk.h) is:

typedef struct _FILE_FULL_EA_INFORMATION {

 ULONG NextEntryOffset;

 UCHAR Flags;

 UCHAR EaNameLength;

 USHORT EaValueLength;

 CHAR EaName[1];

} FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION;

Because the buffer used to store EABuffer is allocated by the Wrapper prior to calling the FSD, it is possible

the allocated buffer will be too small. In this case, the FSD should set EABufferSize to indicate the minimum

acceptable size of the buffer and return STATUS_BUFFER_OVERFLOW.

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

64 ©| OSR Open Systems Resources, Inc.

STATUS_BUFFER_OVERFLOW – the buffer provided was too small. The minimum sized buffer required is

specified in EaBufferSize upon return from the FSD.

STATUS_NO_EAS_ON_FILE – there are no EAs on the file or directory

 FSDK Programming Interface

65 ©| OSR Open Systems Resources, Inc.

FS_GET_NAMES

NTSTATUS

(*FS_GET_NAMES)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PUNICODE_STRING LongName,

 IN OUT PUNICODE_STRING ShortName);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle against which this operation is being performed.

LongName — On input, the long name for this file (if known). On output, a long name for this file.

ShortName — On input, the short name for this file (if known). On output, a short name for this file.

Description:

In order to allow the FSDK to handle long/short name issues more effectively (in earlier versions it

accomplishes this by enumerating the directory and matching the names in that fashion) this API allows the

FSDK to specify one of the known names for a file and retrieve the corresponding long or short name for the

file.

If this API is not supported and the FSD has set OW_FS_ATTR_SHORT_NAMES, the FSDK will query the

directory.

If the FSD has set OW_FS_ATTR_FSD_SHORT_NAMES, this API must be supported.

Returns:

STATUS_SUCCESS – the operation was successful.

STATUS_BUFFER_OVERFLOW – one (or both) of the buffers was too small.

 FSDK Programming Interface

66 ©| OSR Open Systems Resources, Inc.

FS_GET_NAMES2

NTSTATUS

(*FS_GET_NAMES2)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PUNICODE_STRING LongName,

 IN OUT PUNICODE_STRING ShortName,

 IN OUT PFS_GET_NAMES2_EXTENDED_INFO ExtendedInfo);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle against which this operation is being performed.

LongName — On input, the long name for this file (if known). On output, a long name for this file.

ShortName — On input, the short name for this file (if known). On output, a short name for this file.

ExtendedInfo — This contains specific information about the type of name being sought in this case.

Description:

In order to allow the FSDK to handle long/short name issues more effectively (in earlier versions it

accomplishes this by enumerating the directory and matching the names in that fashion) this API allows the

FSDK to specify one of the known names for a file and retrieve the corresponding long or short name for the

file.

If this API is not supported and the FSD has set OW_FS_ATTR_SHORT_NAMES, the FSDK will query the

directory.

If the FSD has set OW_FS_ATTR_FSD_SHORT_NAMES, this API must be supported. This API must also be

provided if LookupById or LookupByObjectId are supported.

Returns:

STATUS_SUCCESS – the operation was successful.

STATUS_BUFFER_OVERFLOW – one (or both) of the buffers was too small.

 FSDK Programming Interface

67 ©| OSR Open Systems Resources, Inc.

FS_GET_SECURITY

NTSTATUS

(*FS_GET_SECURITY)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PVOID *SecurityDescriptor,

 IN OUT PULONG SecurityDescriptorSize);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle on which the security descriptor is to be retrieved.

SecurityDescriptor — This buffer contains the self-relative format security descriptor stored with this file (if

any).

SecurityDescriptorSize — This value indicates the size of the SecurityDescriptor returned to the Wrapper by

the FSD.

Description:

This routine is used to retrieve the Windows-format security information for the given file if one exists. If

not, the SecurityDescriptor value should be set to NULL which indicates that there is no security descriptor

associated with the file. Otherwise, the returned SecurityDescriptor should point to a buffer containing a

valid security descriptor (use RtlValidateSecurityDescriptor to validate security descriptors). If the returned

SecurityDescriptor has no associated DACL then no access will be granted to the file, except for specific

operations:

 Any process with SeTakeOwnershipPrivilege may take ownership of the file, which will create a

new security descriptor encoding the new owner of the file.

 Any process associated with the SID that owns the existing file (if any) may change the security

descriptor for the file.

Support for FS_GET_SECURITY is optional. However, the FSD must support both FS_GET_SECURITY and

FS_SET_SECURITY if it supports either interface.

This operation requests that the FSD return a self-relative formatted security descriptor for the file or

directory if one exists. If it does exist, the FSD should allocate a buffer sufficiently large to contain the

security descriptor by calling OwAllocateSDBuffer and using that buffer to store the security descriptor.

To summarize:

 FSDK Programming Interface

68 ©| OSR Open Systems Resources, Inc.

 Upon entry to the FSD, the value contained in SecurityDescriptor will be NULL.

 If the file or directory does not have a security descriptor, the FSD should return an error status

(all error status are treated as indications there is no security descriptor). The FSDK will not

track a security descriptor for this file (although an external application can set one, if

supported by the FSD).

 If the file or directory has an empty security descriptor, the FSD should return a valid security

descriptor that does not contain any of the four fields (owner SID, group SID, DACL, or SACL).

The buffer should be allocated using OwAllocateSDBuffer and the size returned should be the

value returned by RtlLengthSecurityDescriptor (or equivalent calculation).

 If the file or directory has a security descriptor, the FSD should allocate a buffer of sufficient size

using OwAllocateSDBuffer and set the value of SecurityDescriptor to the address of the buffer.

The contents of the security descriptor buffer must be a valid security descriptor.

Each file or directory can have its own distinct security descriptor.

The security information contained in the buffer is generally not useful to the FSD. This interface provides a

simple mechanism that allows a file system to support standard Windows security policies by simply storing

and retrieving security information on a per file (or directory) basis. The wrapper performs all security

operations for the FSD if the FS_GET_SECURITY and FS_SET_SECURITY interfaces are implemented by the

FSD.

Additional security policies may be implemented using the FS_ACCESS interface.

The FSDK will deallocate the buffer returned by the FSD for the security descriptor.

Returns:

STATUS_SUCCESS – the operation was successful.

STATUS_BUFFER_OVERFLOW – the SecurityDescriptor buffer was too small. SecurityDescriptorSize is set to

the minimum size.

 FSDK Programming Interface

69 ©| OSR Open Systems Resources, Inc.

FS_GET_UNC_VOLUME_ATTRIBUTES

NTSTATUS

(*FS_GET_UNC_VOLUME_ATTRIBUTES)(

 IN FS_FILE_HANDLE FileHandle,

 IN PFS_VOL_ATTRIBUTES VolumeAtttributes,

 IN OUT PULONG VolumeAttributesBufferSize);

Status: Required Used if Present

 Media File Systems No No

 Network File Systems No Yes

 Pseudo File Systems No No

Parameters:

FileHandle — An FSD-provided handle representing a file or directory on the UNC volume of interest.

VolumeAttributes – The Wrapper-allocated structure being filled in by the FSD.

VolumeAttributesBufferSize – On input, the size of the VolumeAttributes buffer. On output, the number of

bytes of data in the buffer.

Description:

This routine is used by the FSDK to retrieve volume attributes for a given UNC volume. Because such a

volume does not have connection state associated with it, there is no corresponding volume information to

provide. If the FSD does not provide this information, the FSDK will return synthetically generated

information to the application program.

Returns:

STATUS_SUCCESS – the buffer contains the complete information

STATUS_BUFFER_OVERFLOW – the buffer was not large enough for the information. The

VolumeAttributesBufferSize contains the minimum buffer size required.

 FSDK Programming Interface

70 ©| OSR Open Systems Resources, Inc.

FS_GET_VOLUME_ATTRIBUTES

NTSTATUS

(*FS_GET_VOLUME_ATTRIBUTES)(

 IN FS_VOL_HANDLE FsdVolumeHandle,

 IN OUT PFS_VOL_ATTRIBUTES VolumeAtttributesBuffer,

 IN OUT PULONG VolumeAttributesBufferSize);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems No Yes

 Pseudo File Systems Yes Yes

Parameters:

FsdVolumeHandle — The FSD-provided handle representing the volume to be used for this operation.

VolumeAttributesBuffer — The Wrapper-allocated buffer where the FSD will store the volume general

attributes.

VolumeAttributesBufferSize — On input, the size of the VolumeAttributesBuffer. On output, the number of

bytes of data in the buffer

Description:

This routine may be used to retrieve one of two possible per-volume attribute structures: Volume

Attributes (FS_VOL_ATTRIBUTES) or Extended Volume Attributes (FS_EXTENDED_VOL_ATTRIBUTES).

Volume Attributes

This first structure is compatible with the FSDK V1.0 structure (see the complete definition of the structure

FS_VOL_ATTRIBUTES later in this document.) The critical fields are:

CreationTime - when the volume was first initialized (this is the time when the volume was

formatted)

SerialNumber - a unique number identifying this file system instance

LabelLength - the volume label length in bytes

Unused – this field is not used and must be zero for compatibility

VolumeSize – the number of allocation units available on the volume

FreeSpace - the number of unallocated allocation units on the volume

BytesPerAllocationUnit - the number of bytes per allocation unit

 FSDK Programming Interface

71 ©| OSR Open Systems Resources, Inc.

DeviceType – standard Windows device type information.

DeviceCharacteristics – standard Windows device characteristics

VolumeLabel - the volume label

The Wrapper allocates the VolumeAttributesBuffer. The size of the passed-in buffer is

VolumeAttributesBufferSize. Should it not be large enough to contain the volume attributes being returned

by the FSD, the VolumeAttributesBufferSize parameter should be set to the minimum size required and

STATUS_BUFFER_OVERFLOW should be returned to the Wrapper.

All times must be returned in Windows standard format – the number of 100 nanosecond intervals since

January 1, 1601.

The Wrapper considers the values provided in this data structure informational in nature and hence it is the

responsibility of the FSD to define the precise semantics of these calls. The one exception to this is the

DeviceCharacteristics field that must conform to the Windows semantics for Device Characteristics, namely

one or more of the following.

FILE_CASE_SENSITIVE_SEARCH

FILE_CASE_PRESERVED_NAMES

FILE_UNICODE_ON_DISK

FILE_PERSISTENT_ACLS

FILE_FILE_COMPRESSION

FILE_VOLUME_IS_COMPRESSED

These values are from winnt.h and describe basic characteristics of a given file system

device.

If any particular field is not supported by the FSD, it should be set to zero (or its equivalent for the data type,

such as the “null string” for the VolumeLabel).

Extended Volume Attributes

In order to allow for additional information to be passed as a result of this call, a newer structure, the

Extended Volume Attributes structure (see the complete definition of the structure

FS_EXTENDED_VOL_ATTRIBUTES later in this document) has been defined in a fashion that is upwards

compatible with the previous implementation of volume attributes. An FSD may return this extended

volume attributes structure; that this extended volume attributes information is being returned is indicated

using a new flags field that overlaps with the previous Unused field. This Flags field must have the

OW_VOL_ATTR_FLAG_EXTENDED bit set. The FSDK uses this bit to determine if the new version (extended

volume attributes) or the old version is present in the return buffer.

 FSDK Programming Interface

72 ©| OSR Open Systems Resources, Inc.

Returns:

STATUS_SUCCESS – the operation was successful.

STATUS_BUFFER_OVERFLOW – the VolumeAttributesBuffer is too small. The minimum sized buffer required

is returned in VolumeAttributesBufferSize.

 FSDK Programming Interface

73 ©| OSR Open Systems Resources, Inc.

FS_IOCTL

NTSTATUS

(*FS_IOCTL)(

 IN FS_FILE_HANDLE FileHandle,

 IN ULONG ControlCode,

 IN PVOID InputBuffer,

 IN ULONG InputBufferSize,

 IN PVOID OutputBuffer,

 IN ULONG OutputBufferSize,

 OUT PULONG BytesWritten,

 OUT PULONG BytesNeeded);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided handle representing the file to be used for this operation.

ControlCode — The identifier for the FSD-specific control operation.

InputBuffer — The input information (if any) for this control operation.

InputBufferSize — The size of the information contained within the input buffer.

OutputBuffer — The location where output information for this control operation should be written (if any).

This field may be NULL if the OutputBufferSize parameter is zero.

OutputBufferSize — The size of the data contained within the output buffer. This field may be zero.

BytesWritten — The number of bytes written to the output buffer.

BytesNeeded — The number of bytes actually required in the output buffer to complete the operation.

Description:

This routine allows FSD-defined control information to be sent between external (application) programs and

the FSD. This can be used to implement statistics gathering, modify file system behavior, etc. The key

difference between this routine and the FS_FSCTRL entry point is that this routine is targeted towards a

particular file while the other entry point is targeted towards the entire file system.

The Wrapper will provide both the InputBuffer and OutputBuffer to the FSD, indicating the size of each. If

the input buffer size is incorrect, the FSD should return STATUS_INVALID_PARAMETER. If the output buffer

size is incorrect, the FSD should return STATUS_BUFFER_TOO_SMALL, BytesWritten should be zero, and

BytesNeeded should indicate the minimum size of the output buffer to complete the operation.

 FSDK Programming Interface

74 ©| OSR Open Systems Resources, Inc.

Note that this call is not identical to the FS_FSCTL entry point in that the target of the call is different. For

this call, the target is the specified file, while in the previous case, the target is the FSD itself. Thus, this may

be used to implement per-file mechanisms for use with a particular FSD.

For media file systems, the Control Code must use a device type of FILE_DEVICE_FILE_SYSTEM. All other

control code values will be passed to the underlying physical media device object bu the wrapper. This

behavior is compatible with the existing implementation of the Windows physical file system.

Returns:

STATUS_SUCCESS – the operation was successful.

STATUS_INVALID_DEVICE_REQUEST – this device does not support the requested operation.

STATUS_INVALID_PARAMETER – the input buffer was not the correct size.

STATUS_BUFFER_TOO_SMALL – the output buffer was too small for the given operation.

 FSDK Programming Interface

75 ©| OSR Open Systems Resources, Inc.

FS_LINK

NTSTATUS

(*FS_LINK)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN FS_FILE_HANDLE FileHandle,

 IN PWSTR LinkName,

 IN PWSTR ShortLinkName);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

DirectoryHandle — The FSD-provided directory handle that contains the directory where the new link is to

be created.

FileHandle — The FSD-provided file handle representing an existing file.

LinkName — The name of the new link to be created. This name is not permitted to contain an embedded

path and must not be an existing entry in the directory represented by DirectoryHandle.

ShortLinkName — The alternate (8.3) name of the new link to be created. If null, there is no alternate name.

Description:

This routine is used to create a hard link to an existing file. It is the responsibility of the FSD to manage the

link count information associated with the given file and to ensure that the actual file is not deleted until the

last link to that file is deleted.

It is an error to create a hard link to a directory.

Note that the Win 32 API CreateHardLink allows for the creation of hard links.

Returns:

STATUS_SUCCESS – the create operation was successful

 FSDK Programming Interface

76 ©| OSR Open Systems Resources, Inc.

FS_LOCK

NTSTATUS

(*FS_LOCK)(

 IN FS_FILE_HANDLE FileHandle,

 IN LARGE_INTEGER Offset,

 IN LARGE_INTEGER Length,

 IN BOOLEAN Exclusive,

 IN BOOLEAN Wait,

 OUT PFS_LOCK_HANDLE LockHandle);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided handle identifying the given file.

Offset — The first byte in the locked range.

Length — The number of bytes to lock beginning at Offset.

Exclusive — Indicates if the requested lock is for exclusive (write) or shared (read) access to the file.

Wait — Indicates if the call should block waiting for the lock to be acquired.

LockHandle — The FSD-defined identifier for this particular lock.

Description:

The Wrapper always provides the standard Windows byte range locking package. However, some file

systems may require notification of such lock requests in order to coordinate with access external to the

local host computer and of which the Wrapper would otherwise not be aware.

Each lock request passed to the FSD is distinct. The Wrapper will not request that the FSD acquire locks

incompatible with previously granted locks, but may request that the FSD grant locks compatible with

previously granted locks. Each such locking request should either be denied, returning an appropriate error

status, or granted. For each such unique lock handle that is returned, a subsequent unlock call (see

FS_UNLOCK) will be made by the Wrapper to the FSD.

If this routine is not implemented by the FSD, all byte range locking will be done without support from the

FSD.

 FSDK Programming Interface

77 ©| OSR Open Systems Resources, Inc.

If the Wait parameter is TRUE, the calling thread should block until the lock can be granted. If the Wait

parameter is FALSE and it is possible for the FSD to grant the lock without waiting, it should do so.

Otherwise, the FSD should return STATUS_LOCK_NOT_GRANTED.

The LockHandle parameter is created by the FSD to identify this particular lock. The Wrapper uses it in a

subsequent call to release the lock. Please note that the FSD must return an identical LockHandle when

attempting to lock the same Offset and Length of a specific file identified by an identical FileHandle.

Returns:

STATUS_SUCCESS – the lock was granted

STATUS_FILE_LOCK_CONFLICT – the lock could not be granted due to a lock conflict

STATUS_LOCK_NOT_GRANTED – the lock could not be granted for unspecified reasons.

 FSDK Programming Interface

78 ©| OSR Open Systems Resources, Inc.

FS_LOOKUP

NTSTATUS

(*FS_LOOKUP)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN PWSTR FileName,

 IN BOOLEAN CaseInsensitive,

 OUT PFS_FILE_HANDLE FileHandle,

 OUT PULONG Type);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

DirectoryHandle — The FSD-provided directory handle representing the base directory from which this file

itself is being opened.

FileName — A null-terminated wide character string describing the file or directory to be located. The file

name will contain neither wildcards nor a partial pathname.

CaseInsensitive — Indicates if the case of the name should be ignored when looking for the file name within

the directory.

FileHandle — The FSD-provided handle to the returned file or directory.

Type — The type of file that has been opened.

Description:

The Wrapper calls this entry to obtain a handle for subsequent reference to a file or directory. This file

handle will be used in subsequent operations from the Wrapper to the FSD.

A lookup is performed for a particular entry relative to a given directory. The DirectoryHandle indicates the

directory to be searched and the FileName indicates the name to be located.

The FileName parameter may not include a path separator character (‘\’) and hence may not be a “path

name”. The CaseInsensitive parameter is used to indicate if name comparisons should depend upon the

case of the names being identical. The Wrapper rejects all names containing Win32 wildcard characters

prior to passing such names to the FSD, so the FSD need not check for wildcard characters (such as “*”).

If the given FileName exists within the directory represented by DirectoryHandle, the FSD will create a

FileHandle representing that file or directory for use in subsequent calls to and from the file system.

 FSDK Programming Interface

79 ©| OSR Open Systems Resources, Inc.

If the given FileName does not exist within the directory represented by DirectoryHandle, the FSD will return

STATUS_OBJECT_NAME_NOT_FOUND to the Wrapper.

If more than one file or directory with the given FileName exists within the directory represented by

DirectoryHandle, the FSD may return any one of the files or directories within the directory. For example,

this would be the case for a file created from a case sensitive system such as POSIX and then accessed from

a case insensitive system such as Win32.

If the FSD returns STATUS_SUCCESS (indicating the operation was successful) the FileHandle returned must

be valid. The Wrapper will then use it for subsequent calls to the FSD. The FileHandle remains valid until a

subsequent call to the FS_RELEASE entry point for the file system.

The Type field indicates what type of file or directory has been found. It is one of the following values:

OW_HANDLE_TYPE_FILE

OW_HANDLE_TYPE_DIRECTORY

OW_HANDLE_TYPE_SYMBOLIC_LINK

OW_HANDLE_TYPE_OTHER

This allows the Wrapper to restrict operations (such as enumerating the contents of a directory) to the

appropriate type of object (a directory).

Other types may be defined as necessary in the future.

This interface allows the supporting of streams using the standard NTFS model. A stream is uniquely

identified by the suffix “::” followed by a name (e.g., $DATA) representing the specific stream. The default

stream is $DATA and hence a file without an explicit stream name will be considered to be equivalent to a

stream with the name “::$DATA” appended to it.

What constitutes a valid file name may be arbitrarily restricted by the FSD. The Wrapper does not explicitly

enforce any particular name requirements.

The Wrapper implements an internal reference counting mechanism so that it is not necessary for the FSD

to do so. Thus, the Wrapper may call the FS_LOOKUP interface many times but will only call the FS_RELEASE

interface once, when the last reference to the file or directory is released by the Wrapper.

Returns:

STATUS_SUCCESS – the lookup was successful

STATUS_OBJECT_NAME_NOT_FOUND – the named file or directory could not be located and the operation

failed.

 FSDK Programming Interface

80 ©| OSR Open Systems Resources, Inc.

FS_LOOKUP_BY_ID

NTSTATUS

(*FS_LOOKUP_BY_ID)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN LARGE_INTEGER FileId,

 OUT PFS_FILE_HANDLE FileHandle,

 OUT PULONG Type);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

DirectoryHandle — The FSD-provided directory handle representing the base directory from which this file

itself is being opened.

FileId — A large integer FSD-specific ID used to identify the given file.

FileHandle — The FSD-provided handle to the returned file or directory.

Type — The type of file that has been opened.

Description:

The Wrapper will call this entry point in order to resolve an “open by id” call from the FSD.

Operationally, this call is identical to FS_LOOKUP except that a File ID is used in place of a file name.

The construction of a file ID is FSD-specific. The actual file ID to use is retrieved from a previously opened

file object (q.v., FS_GET_ATTRIBUTES). Typically, this operation is used by file servers that implement

stateless file system protocols and hence embed the file id in an opaque network file handle.

Note that support for this interface is currently not required for Windows. This functionality is currently

used by the “Services For Macintosh” and “Services For Unix” support. However, this product cannot be

used with any file systems other than NTFS and CDFS.

If this entry point is supported, then the FSD should also support FS_GET_NAMES2, FS_DELETE3, and

FS_RENAME2.

Returns:

STATUS_SUCCESS – the lookup was successful

STATUS_OBJECT_NAME_NOT_FOUND – the lookup failed

 FSDK Programming Interface

81 ©| OSR Open Systems Resources, Inc.

FS_LOOKUP_BY_OBJECT_ID

NTSTATUS

(*FS_LOOKUP_BY_OBJECT_ID)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN GUID *Guid,

 OUT PFS_FILE_HANDLE FileHandle,

 OUT PULONG Type);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

DirectoryHandle — The FSD-provided directory handle representing the base directory from which this file

itself is being opened.

Guid — A 16 byte data element used within the Windows system as a "globally unique identifier".

FileHandle — The FSD-provided handle to the returned file or directory.

Type — The type of file that has been opened.

Description:

The Wrapper will call this entry point in order to resolve an “open by object id” call from the FSD.

Operationally, this call is identical to FS_LOOKUP except that a Guid is used in place of a file name.

A globally unique identifier may be assigned by the file system. If the file system does not assign a GUID but

wishes to support per-file GUIDs, it must allow applications (via the appropriate FSCTL operations) to set the

GUID value for the given file. The GUID of the given file is retrieved using the FSCTL_GET_OBJECT_ID

operation.

Note that support for this interface is currently not required for Windows. This functionality is currently

used by several OS components, such as the Single Instance Store (SIS).

If this entry point is supported, then the FSD should also support FS_GET_NAMES2, FS_DELETE3, and

FS_RENAME2.

Returns:

STATUS_SUCCESS – the lookup was successful

STATUS_OBJECT_NAME_NOT_FOUND – the lookup failed

 FSDK Programming Interface

82 ©| OSR Open Systems Resources, Inc.

FS_LOOKUP_PATH

NTSTATUS

(*FS_LOOKUP_PATH)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN PWSTR PathName,

 IN BOOLEAN CaseInsensitive,

 IN PIO_SECURITY_CONTEXT CallerSecurityContext,

 OUT PFS_FILE_HANDLE ParentDirectoryHandle,

 OUT PFS_FILE_HANDLE FileHandle,

 OUT PULONG Type);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

DirectoryHandle — The FSD-provided directory handle representing the base directory from which this file

itself is being opened.

PathName — A null-terminated wide character string describing the partially qualified path of the file or

directory to be looked up.

CaseInsensitive — Indicates if the case of the name should be ignored when looking for the file name within

the directory.

CallerSecurityContext — The security context of the caller attempting to perform the lookup operation.

ParentDirectoryHandle — The FSD-provided handle to the directory in which the file or directory

represented by FileHandle is located.

FileHandle — The FSD-provided handle to the returned file or directory.

Type — The type of file that has been opened.

Description:

The Wrapper calls this entry to obtain a handle for subsequent reference to a file or directory. This file

handle will be used in subsequent operations from the Wrapper to the FSD.

Returns:

STATUS_SUCCESS – the lookup was successful

STATUS_ACCESS_DENIED – the caller did not have sufficient privilege level to access the file

STATUS_OBJECT_PATH_NOT_FOUND – a component of the path name was not valid

 FSDK Programming Interface

83 ©| OSR Open Systems Resources, Inc.

STATUS_OBJECT_NAME_NOT_FOUND – the last component of the path name was not valid

If the FSD returns STATUS_OBJECT_NAME_NOT_FOUND the ParentDirectoryHandle

must be a valid handle. This allows for the creation of new files, for example, where the

directory does exist, but the new file does not.

 FSDK Programming Interface

84 ©| OSR Open Systems Resources, Inc.

FS_MOUNT

NTSTATUS

(*FS_MOUNT)(

 IN PVOID MediaHandle,

 IN OUT PFS_VOL_HANDLE FsdVolumeHandle,

 OUT PFS_FILE_HANDLE RootDirectoryHandle);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems No No

 Pseudo File Systems Yes Yes

Parameters:

MediaHandle — An opaque handle provided by the Wrapper to the FSD to indicate what media is being

mounted.

FsdVolumeHandle — The handle to be used by the Wrapper when sending messages to the FSD. This

context handle is provided to the Wrapper by the FSD.

RootDirectoryHandle — The file handle representing the root directory of the given file system media

device.

Description:

The mount entry point is used by the Wrapper to provide the FSD with an opportunity to examine the

proffered volume and determine if the disk signature indicates the given volume belongs to this FSD.

For physical media file systems, the MediaHandle is used in the lower-edge routines to indicate the

particular media volume being managed. For a pseudo file system, the MediaHandle represents the opaque

handle value provided as part of a “pseudo mount” operation.

An FSD is responsible for examining the volume specified by the MediaHandle and determining if the volume

should be mounted. The exact mechanism for doing this is the responsibility of the FSD, but is normally

done via some “disk signature” examination method.

Returns:

STATUS_UNRECOGNIZED_VOLUME – the volume specified is not mountable by this file system.

STATUS_SUCCESS – the volume has been successfully mounted

 FSDK Programming Interface

85 ©| OSR Open Systems Resources, Inc.

FS_QUERY_PATH

NTSTATUS

(*FS_QUERY_PATH)(

 IN PWSTR PathName,

 OUT PULONG PathNameAccepted,

 OUT PFS_FILE_HANDLE DirectoryHandle);

Status: Required Used if Present

 Media File Systems No No

 Network File Systems Yes Yes

 Pseudo File Systems No No

Parameters:

PathName — The null-terminated UNC name to be analyzed by the FSD.

PathNameAccepted — The number of bytes (not wide-characters) recognized by the FSD as being the

“prefix” of a network share.

DirectoryHandle — The FSD provided handle used to represent the directory recognized by the FSD.

Description:

This routine is called by the Wrapper to determine if the network FSD recognizes a given UNC name. If it is

recognized, the FSD should return STATUS_SUCCESS and indicate the portion of the name that represents a

valid network share, not including the final separator character (‘\’) of the recognized portion of the name.

If the UNC name is not recognized, the FSD should return STATUS_OBJECT_NAME_NOT_FOUND.

The DirectoryHandle will be used in subsequent calls to access the network share via its UNC name. This

DirectoryHandle must remain valid until a subsequent call to FS_RELEASE from the Wrapper.

The purpose of this call is to determine the “ownership” of a particular network name. Thus, various

Windows OS components query each registered UNC provider in order to determine where to send

subsequent requests for that particular name. However, rather than restrict it only to a given file, the

interface is constructed so that the FSD indicates the “prefix” portion of the name. Any future names that

match the same prefix can be routed immediately to the correct file system, thus enhancing the overall

performance and responsiveness of the system.

Returns:

STATUS_SUCCESS – the prefix was recognized

STATUS_OBJECT_NAME_NOT_FOUND – the prefix was not recognized

 FSDK Programming Interface

86 ©| OSR Open Systems Resources, Inc.

FS_READ

NTSTATUS

(*FS_READ)(

 IN FS_FILE_HANDLE FileHandle,

 IN LARGE_INTEGER FileOffset,

 IN PMDL Buffer,

 IN ULONG BufferSize,

 OUT PULONG BytesRead);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

FileHandle — The FSD-provided file handle against which this read operation is being performed.

FileOffset — The byte-range offset into the file where the I/O begins.

Buffer — A pointer to the MDL representing the pages where data should be read from the disk into

memory.

BufferSize — The number of bytes to be read into the region described by Buffer.

BytesRead – This indicates the number of bytes read by the FSD.

Description:

This entry point is used by the Wrapper to perform actual I/O. Because the normal model for the Wrapper is

to cache data, this entry point will typically be called to handle a non-cached I/O request. Typically this is a

request to satisfy a page fault while accessing the file cache.

To facilitate the development of an FSD, the FSD may assume that the I/O operations adhere to the

following guidelines:

For physical media file systems, the FileOffset will be aligned on a sector-sized boundary. For all other file

systems, the alignment will be 512 bytes. In fact, we expect that this will be page aligned, but we use the

weaker requirement to support non-cached I/O directly from utilities and user applications, although such

are rare.

If this entry point returns STATUS_SUCCESS, BytesRead will indicate the actual number of bytes read by the

FSD.

Upon completion of the Read operation by the FSD, BytesRead must be less than or equal to BufferSize.

 FSDK Programming Interface

87 ©| OSR Open Systems Resources, Inc.

The Wrapper is responsible for ensuring that any data beyond the current end-of-file is eliminated prior to

presentation to a user application. Thus, BytesRead does not indicate that the size of the valid data portion

of the file has been extended.

The principal goal of this design is to ensure that I/O to the FSD falls on naturally aligned boundaries. Note

that typically, I/O is done in PAGE_SIZE units. Odd sizes are typically only used for “boundary conditions”

such as the last component (less than PAGE_SIZE) of a file.

For file systems that implement sparse storage, this operation expects that any unallocated space will be

returned as zero-filled sections of the file and that the BytesRead parameter reports the actual number of

bytes that were transferred into the output buffer.

Returns:

STATUS_SUCCESS – the operation was successful.

STATUS_WRONG_VOLUME – the volume has changed and the read cannot be completed with the currently

available volume (verify is required.)

STATUS_NO_MEDIA_IN_DEVICE – the volume is not available because the media has been removed.

STATUS_INSUFFICIENT_RESOURCES – the FSD was unable to complete the I/O operation due to insufficient

memory resources

STATUS_DISK_CORRUPT – the file system structure on the disk is damaged.

 FSDK Programming Interface

88 ©| OSR Open Systems Resources, Inc.

FS_READ_DIRECTORY

NTSTATUS

(*FS_READ_DIRECTORY)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN OUT PULONG DirectoryOffset,

 IN PFS_DIRECTORY_ENTRY OutputBuffer,

 IN ULONG OutputBufferSize);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

DirectoryHandle —The FSD-provided directory handle for the directory being read.

DirectoryOffset —This provides the offset context being used to enumerate the directory contents.

OutputBuffer —This buffer is provided by the Wrapper and may contain one or more directory entries.

OutputBufferSize —This indicates the size of the buffer provided by the Wrapper.

Description:

This function is obsolete and has been replaced with the FS_READ_DIRECTORY3 interface. It is documented

here only for compatibility with existing file system drivers.

The FS_READ_DIRECTORY and FS_READ_DIRECTORY3 functions work identically except that the format of

the structure they use is slightly different. For FS_READ_DIRECTORY the structure is:

typedef struct {

 ULONG EntrySize;

 ULONG LastDirectoryEntry;

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 LARGE_INTEGER Unused;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength;

 ULONG Attributes;

 ULONG NameSize;

 UCHAR ShortNameSize;

 WCHAR ShortName[12];

 WCHAR Name[1]; // and for the balance of this entry

} FS_DIRECTORY_ENTRY, *PFS_DIRECTORY_ENTRY;

Please refer to FS_READ_DIRECTORY3 for details about the manner in which this call is implemented.

 FSDK Programming Interface

89 ©| OSR Open Systems Resources, Inc.

Returns:

STATUS_SUCCESS – the operation was successful and the buffer contents are valid

STATUS_NO_SUCH_FILE – the directory is empty

STATUS_NO_MORE_FILES – there are no additional entries to enumerate, the buffer contents are not valid

 FSDK Programming Interface

90 ©| OSR Open Systems Resources, Inc.

FS_READ_DIRECTORY2

NTSTATUS

(*FS_READ_DIRECTORY2)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN OUT PULONG DirectoryOffset,

 IN PFS_DIRECTORY_ENTRY2 OutputBuffer,

 IN ULONG OutputBufferSize);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

DirectoryHandle —The FSD-provided directory handle for the directory being read.

DirectoryOffset —This provides the offset context being used to enumerate the directory contents.

OutputBuffer —This buffer is provided by the Wrapper and may contain one or more directory entries.

OutputBufferSize —This indicates the size of the buffer provided by the Wrapper.

Description:

Note that this call has superseded FS_READ_DIRECTORY. The two functions work identically (and are

presently implemented using the same functional logic) but utilize slightly different structures.

FS_READ_DIRECTORY2 uses the FS_DIRECTORY_ENTRY2 structure, which is compatible with the Windows

directory structure data and thus simplifies the implementation of certain types of “pseudo” file systems.

The Wrapper manages the interface with the Windows directory enumeration mechanism, including packing

user buffers, etc. The interface between the Wrapper and the FSD is a simpler iterative interface.

The Wrapper does this by making a series of calls into the FSD to retrieve file system information. The

DirectoryOffset value is used to communicate information between successive calls to this interface routine.

That is, the first time this call will be made, the Wrapper will set this value to zero. Thus, the FSD should

treat a DirectoryOffset value of zero as indicating an enumeration of the directory beginning with the first

entry in the directory.

The FSD then uses the OutputBuffer as storage for its response to this request. The FSD must pack at least

one entry into this buffer, if one is available, but may pack as many entries as can fit into the buffer and then

returns STATUS_SUCCESS to the Wrapper to indicate there is some valid data within the buffer.

A directory entry has a fixed format:

 FSDK Programming Interface

91 ©| OSR Open Systems Resources, Inc.

typedef struct {

 ULONG EntrySize;

 ULONG LastDirectoryEntry;

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 LARGE_INTEGER Unused;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength;

 ULONG Attributes;

 ULONG NameSize;

 ULONG EaSize;

 UCHAR ShortNameSize;

 WCHAR ShortName[12];

 WCHAR Name[1]; // and for the balance of this entry

} FS_DIRECTORY_ENTRY2, *PFS_DIRECTORY_ENTRY2;

Note that this structure declaration includes the EaSize field which makes this

compatible with the standard Windows directory entry.

The Wrapper parses the buffer by examining each entry in turn, using a simple algorithm:

1. If NameSize is zero, the entry is skipped

2. Otherwise, the entry is processed as a valid directory entry

3. If LastDirectoryEntry is non-zero, the next entry in the buffer exists and will be processed

Thus, the buffer is parsed until the Wrapper has properly processed all valid entries within the buffer.

An FSD need not return the entire directory contents in a single buffer. To handle this case, the FSD returns

the DirectoryOffset value. If, after processing the current buffer, this value is non-zero, the Wrapper will call

the FSD again, asking for additional directory entries to process. This process continues until one of three

things occurs:

1. The FSD returns a DirectoryOffset value of zero and a return value of STATUS_SUCCESS. This

indicates that the current buffer has valid contents, but that there is no additional information

available regarding this particular directory;

2. The FSD returns a status code of STATUS_NO_MORE_FILES or STATUS_NO_SUCH_FILE, in which

case enumeration terminates immediately and the returned buffer is assumed to contain no

valid data;

3. The FSD returns any error status, in which case it is treated as an I/O error and the user request

to enumerate the directory will fail with the given error code. This should be reserved for

serious FSD errors, such as a media or network failure.

If a directory is empty of all contents, the FSD should return STATUS_NO_SUCH_FILE.

Windows assumes that every directory contains two entries: “.” and “..”. An FSD need not return these

entries to the Wrapper. If an FSD does return these entries to the wrapper the first entry returned must be

“.” and the second entry “..”. Otherwise, if the first entry is not “.” and the second entry “..” the Wrapper

will create a “.” and “..” entry for the directory.

 FSDK Programming Interface

92 ©| OSR Open Systems Resources, Inc.

Note: At the risk of confusing things further, there is one case when the Wrapper does

not create these entries for an empty directory. If the root directory of a volume is

totally empty, in that particular case the semantics of the existing file systems (NTFS

and FAT) is to return STATUS_NO_SUCH_FILE to the caller. These semantics are

duplicated by the Wrapper.

Returns:

STATUS_SUCCESS – the operation was successful and the buffer contents are valid

STATUS_NO_SUCH_FILE – the directory is empty

STATUS_NO_MORE_FILES – there are no additional entries to enumerate, the buffer contents are not valid

 FSDK Programming Interface

93 ©| OSR Open Systems Resources, Inc.

FS_READ_DIRECTORY3

NTSTATUS

(*FS_READ_DIRECTORY3)(

 IN FS_FILE_HANDLE DirectoryHandle,

 IN OUT PULONG DirectoryOffset,

 IN PFS_DIRECTORY_ENTRY3 OutputBuffer,

 IN ULONG OutputBufferSize);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

DirectoryHandle —The FSD-provided directory handle for the directory being read.

DirectoryOffset —This provides the offset context being used to enumerate the directory contents.

OutputBuffer —This buffer is provided by the Wrapper and may contain one or more directory entries.

OutputBufferSize —This indicates the size of the buffer provided by the Wrapper.

Description:

Note that this call has superseded FS_READ_DIRECTORY2. The two functions work identically (and are

presently implemented using the same functional logic) but utilize slightly different structures.

FS_READ_DIRECTORY3 uses the FS_DIRECTORY_ENTRY3 structure, which is compatible with the Windows

directory structure data and thus simplifies the implementation of certain types of “pseudo” file systems.

The Wrapper manages the interface with the Windows directory enumeration mechanism, including packing

user buffers, etc. The interface between the Wrapper and the FSD is a simpler iterative interface.

The Wrapper does this by making a series of calls into the FSD to retrieve file system information. The

DirectoryOffset value is used to communicate information between successive calls to this interface routine.

That is, the first time this call will be made, the Wrapper will set this value to zero. Thus, the FSD should

treat a DirectoryOffset value of zero as indicating an enumeration of the directory beginning with the first

entry in the directory.

The FSD then uses the OutputBuffer as storage for its response to this request. The FSD must pack at least

one entry into this buffer, if one is available, but may pack as many entries as can fit into the buffer and then

returns STATUS_SUCCESS to the Wrapper to indicate there is some valid data within the buffer.

A directory entry has a fixed format:

 FSDK Programming Interface

94 ©| OSR Open Systems Resources, Inc.

typedef struct {ULONG EntrySize;

 ULONG LastDirectoryEntry;

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 LARGE_INTEGER Unused;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength;

 ULONG Attributes;

 ULONG NameSize;

 ULONG EaSize;

 UCHAR ShortNameSize;

 WCHAR ShortName[12];

 LARGE_INTEGER FileID;

 WCHAR Name[1]; // and for the balance of this entry

} FS_DIRECTORY_ENTRY3, *PFS_DIRECTORY_ENTRY3;

Note that this structure declaration includes the EaSize field which makes this

compatible with the standard Windows directory entry.

The Wrapper parses the buffer by examining each entry in turn, using a simple algorithm:

1. If NameSize is zero, the entry is skipped

2. Otherwise, the entry is processed as a valid directory entry

3. If LastDirectoryEntry is non-zero, the next entry in the buffer exists and will be processed

Thus, the buffer is parsed until the Wrapper has properly processed all valid entries within the buffer.

An FSD need not return the entire directory contents in a single buffer. To handle this case, the FSD returns

the DirectoryOffset value. If, after processing the current buffer, this value is non-zero, the Wrapper will call

the FSD again, asking for additional directory entries to process. This process continues until one of three

things occurs:

1. The FSD returns a DirectoryOffset value of zero and a return value of STATUS_SUCCESS. This

indicates that the current buffer has valid contents, but that there is no additional information

available regarding this particular directory;

2. The FSD returns a status code of STATUS_NO_MORE_FILES or STATUS_NO_SUCH_FILE, in which

case enumeration terminates immediately and the returned buffer is assumed to contain no

valid data;

3. The FSD returns any error status, in which case it is treated as an I/O error and the user request

to enumerate the directory will fail with the given error code. This should be reserved for

serious FSD errors, such as a media or network failure.

If a directory is empty of all contents, the FSD should return STATUS_NO_SUCH_FILE.

Windows assumes that every directory contains two entries: “.” and “..”. An FSD need not return these

entries to the Wrapper. If an FSD does return these entries to the wrapper the first entry returned must be

 FSDK Programming Interface

95 ©| OSR Open Systems Resources, Inc.

“.” and the second entry “..”. Otherwise, if the first entry is not “.” and the second entry “..” the Wrapper

will create a “.” and “..” entry for the directory.

Note: At the risk of confusing things further, there is one case when the Wrapper does

not create these entries for an empty directory. If the root directory of a volume is

totally empty, in that particular case the semantics of the existing file systems (NTFS

and FAT) is to return STATUS_NO_SUCH_FILE to the caller. These semantics are

duplicated by the Wrapper.

Returns:

STATUS_SUCCESS – the operation was successful and the buffer contents are valid

STATUS_NO_SUCH_FILE – the directory is empty

STATUS_NO_MORE_FILES – there are no additional entries to enumerate, the buffer contents are not valid

 FSDK Programming Interface

96 ©| OSR Open Systems Resources, Inc.

FS_READ_STREAM_INFORMATION

NTSTATUS

(*FS_READ_STREAM_INFORMATION)(

 IN FS_FILE_HANDLE FileHandle,

 IN OUT PFS_STREAM_ENTRY OutputBuffer,

 IN OUT PULONG OutputBufferSize);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file that is being queried with respect to its stream state.

OutputBuffer — This buffer contains one or more stream information structures within the given file.

OutputBufferSize — This value indicates the size of the OutputBuffer being returned by the FSD to the

Wrapper.

Description:

This entry point is used by the Wrapper to enumerate the streams associated with a given file being stored

by the FSD.

The OutputBuffer is allocated by the Wrapper and its size is indicated in OutputBufferSize. If the given buffer

is not large enough to contain the requested information, the FSD should fail the request and indicate the

minimum required size via OutputBufferSize.

Returns:

STATUS_SUCCESS – the operation was successful

STATUS_BUFFER_OVERFLOW – the stream information buffer OutputBuffer was too small to contain the

information. The minimum size is indicated in OutputBufferSize.

 FSDK Programming Interface

97 ©| OSR Open Systems Resources, Inc.

FS_RELEASE

NTSTATUS

(*FS_RELEASE)(

 IN FS_FILE_HANDLE FileHandle);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems Yes Yes

 Pseudo File Systems Yes Yes

Parameters:

FileHandle — The FSD-provided file handle to be released.

Description:

This routine is called by the Wrapper to release the given file handle from further use. The FileHandle is no

longer considered valid after a call to Release, although the FSD is free to cache file handles for use with

subsequent calls to Lookup.

Note that because the Wrapper is implementing an internal reference counting scheme, regardless of the

number of calls the Wrapper makes to FS_LOOKUP there will be only a single call to FS_RELEASE, when the

Wrapper is releasing the file handle. It is not necessary for the FSD to implement its own internal reference

counting scheme.

The Wrapper will treat a release failure as catastrophic and halt system operation.

Note that it is considered normal system behavior that the call to FS_RELEASE is not coordinated with user

applications closing the file. This is due to integration with the Virtual Memory system that caches file

system data until the memory is needed for newer, more urgent operations. Thus, typically it is other I/O to

the file systems that trigger the FS_RELEASE call.

Returns:

STATUS_SUCCESS – the release was successful

 FSDK Programming Interface

98 ©| OSR Open Systems Resources, Inc.

FS_REMOVE_SHARE_ACCESS

NTSTATUS

(*FS_REMOVE_SHARE_ACCESS)(

 IN FS_FILE_HANDLE FileHandle,

 IN ULONG ShareAccess);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle on which the share check is to be made.

ShareAccess – a combination of FILE_SHARE_READ, FILE_SHARE_WRITE, and FILE_SHARE_DELETE options

Description:

This routine is used by the FSDK to indicate the release of shared access rights to the underlying file system,

which were previously obtained via a successful call to FS_UPDATE_SHARE_ACCESS.

Returns:

STATUS_SUCCESS – the share access was successfully removed

STATUS_NOT_IMPLEMENTED – the only allowable error status

 FSDK Programming Interface

99 ©| OSR Open Systems Resources, Inc.

FS_RENAME

NTSTATUS

(*FS_RENAME)(

 IN FS_FILE_HANDLE SourceDirectoryHandle,

 IN FS_FILE_HANDLE TargetDirectoryHandle,

 IN FS_FILE_HANDLE SourceFileHandle,

 IN PWSTR TargetFileName,

 IN PWSTR TargetFileAlternateName,

 OUT PFS_FILE_HANDLE TargetFileHandle);

Status: Required Used if Present

 Media File Systems No (Yes, if FS-CREATE is supported) Yes

 Network File Systems No (Yes, if FS-CREATE is supported) Yes

 Pseudo File Systems No Yes

Parameters:

SourceDirectoryHandle — The FSD-provided directory handle of the directory that contains the currently

existing file.

TargetDirectoryHandle — The FSD-provided directory handle of the directory that will contain the file upon

completion of the operation.

SourceFileHandle — The FSD-provided file handle for the target of the rename operation.

TargetFileName — The name of the file in the target directory upon completion of this operation.

TargetFileAlternateName — The alternate (8.3) name of the file in the target directory upon completion of

this operation. If this value is null, there is no alternative name.

TargetFileHandle — The handle of the newly renamed file upon completion of this operation.

Description:

The FS_RENAME routine is used to move a file from one directory to another directory. The

SourceDirectoryHandle represents the directory where the file is currently located. The

TargetDirectoryHandle represents the directory where the file will be located upon completion of this call.

SourceDirectoryHandle and TargetDirectoryHandle may be identical.

If SourceFileHandle and TargetFileHandle differ, the Wrapper is responsible for updating its own internal

state so that only TargetFileHandle is used in the future to access this file. The Wrapper will no longer use

SourceFileHandle as if an implicit call to FS_RELEASE had been made with respect to the SourceFileHandle.

 FSDK Programming Interface

100 ©| OSR Open Systems Resources, Inc.

Returns:

STATUS_SUCCESS – the operation was successful

This function is suitable only for use by file systems that do not support hard links. File

systems that support hard links should use FS_RENAME2

 FSDK Programming Interface

101 ©| OSR Open Systems Resources, Inc.

FS_RENAME2

NTSTATUS

(*FS_RENAME2)(

 IN FS_FILE_HANDLE SourceDirectoryHandle,

 IN FS_FILE_HANDLE TargetDirectoryHandle,

 IN FS_FILE_HANDLE SourceFileHandle,

 IN PWSTR SourceFileName,

 IN PWSTR TargetFileName,

 IN PWSTR TargetFileAlternateName,

 OUT PFS_FILE_HANDLE TargetFileHandle);

Status: Required Used if Present

 Media File Systems No (Yes, if FS-CREATE is supported) Yes

 Network File Systems No (Yes, if FS-CREATE is supported) Yes

 Pseudo File Systems No Yes

Parameters:

SourceDirectoryHandle — The FSD-provided directory handle of the directory that contains the currently

existing file.

TargetDirectoryHandle — The FSD-provided directory handle of the directory that will contain the file upon

completion of the operation.

SourceFileHandle — The FSD-provided file handle for the target of the rename operation.

SourceFileName — The name of the file in the source directory.

TargetFileName — The name of the file in the target directory upon completion of this operation.

TargetFileAlternateName — The alternate (8.3) name of the file in the target directory upon completion of

this operation. If this value is null, there is no alternative name.

TargetFileHandle — The handle of the newly renamed file upon completion of this operation.

Description:

This routine is used to rename an existing file. This may include:

 Changing the name of a file within its current directory

 Moving a file from one directory to another directory

 Changing the case of the name of a file

Note that rename operations are not supported across volumes. However, if your file system does not

expose the “normal” volume model you will be responsible for rejecting any cross-volume mount requests.

 FSDK Programming Interface

102 ©| OSR Open Systems Resources, Inc.

The SourceDirectoryHandle represents the directory where the file is currently located. The

TargetDirectoryHandle represents the directory where the file will be located upon completion of this call.

SourceDirectoryHandle and TargetDirectoryHandle may be identical.

If SourceFileHandle and TargetFileHandle differ, the Wrapper is responsible for updating its own internal

state so that only TargetFileHandle is used in the future to access this file. The Wrapper will no longer use

SourceFileHandle as if an implicit call to FS_RELEASE had been made with respect to the SourceFileHandle.

The SourceFileName is provided to allow file systems that support hard links to distinguish which particular

instance of a directory entry is being renamed as a result of this operation. Otherwise, this entry point

functions identically to the FS_RENAME entry point.

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

103 ©| OSR Open Systems Resources, Inc.

FS_SET_ACCESS_MODE

NTSTATUS

(*FS_SET_ACCESS_MODE)(

 IN FS_FILE_HANDLE FileHandle,

 IN UCHAR AccessMode);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle representing the instance of the file for which the access mode

is being set.

AccessMode — A value indicating the type of access requested for this file.

Description:

The Wrapper calls this routine prior to any I/O calls on the given file to indicate the type of I/O access the

FSD can expect for the given file.

The Wrapper will not call FS_READ, FS_WRITE, or FS_SET_LENGTH until this entry point has been called, but

may use other entry points to obtain attribute information about the file. Once set, the nature of the file

access will not be modified – that is, a second call will not be made to the FSD using the same file handle.

Hence, subsequent accesses to the file must be consistent with previous accesses to the file.

The AccessMode may be one of the following values:

FS_ACCESS_NONE – no I/O operations will be performed for this file

FS_ACCESS_READ – only read I/O operations will be performed for this file

FS_ACCESS_WRITE – only write I/O operations will be performed for this file

FS_ACCESS_ALL – both read and write I/O operations will be performed for this file

FS_ACCESS_SEQUENTIAL – I/O access to this file is expected to be sequential

FS_ACCESS_RANDOM – I/O access to this file is expected to be random

FS_ACCESS_TEMPORARY – this file’s existence is temporary in nature and is expected to be deleted

or truncated.

 FSDK Programming Interface

104 ©| OSR Open Systems Resources, Inc.

These access modes are “hints” into the underlying FSD based upon expected access patterns to the file.

Access patterns not conforming to these hints should still work correctly, but might entail lower

performance.

Ideally, the FSD may use this to prepare for I/O access. This allows an FSD to allocate any FSD-internal data

structures or buffers necessary to provide FSD-specific service guarantees as well as optimizing use of FSD

resources. For instance, certain file systems may need to allocate buffers differently depending upon this

access mode.

An FSD need not provide this entry point. If this entry point is not provided, the Wrapper will treat the file

as if FS_ACCESS_ALL had been granted for the given file.

Returns:

STATUS_SUCCESS – the operation was successful

Since the intent of this routine is to inform the FSD of the expected file access pattern, STATUS_SUCCESS is

the only valid return value. All other return values will cause an assertion in the debug version of the

wrapper.

 FSDK Programming Interface

105 ©| OSR Open Systems Resources, Inc.

FS_SET_ATTRIBUTES

NTSTATUS

(*FS_SET_ATTRIBUTES)(

 IN FS_FILE_HANDLE FileHandle,

 IN PFS_FILE_ATTRIBUTES FileAtttributes);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle for which the attribute information is being set.

FileAttributes — The Wrapper-allocated buffer containing the general file attributes.

Description:

This routine is used to modify the basic attributes associated with any file or directory stored by the FSD.

Note that the FSD is free to specify that any of these attributes are “read-only” and that they cannot be

modified via this call.

When the Wrapper wants to change a subset of parameters in a FS_FILE_ATTRIBUTES structure, it precedes

FS_SET_ATTRIBUTES with a call to FS_GET_ATTRIBUTES. The Wrapper then changes the desired attribute,

and calls FS_SET_ATTRIBUTES with the complete structure.

The Wrapped does not attempt to change file length (either used or allocated) using this function. All file

length changes are done using FS_SET_LENGTH. Therefore, the FSD may ignore the AllocationSize and

ValidDataLength fields passed during calls to the FS_SET_ATTRIBUTES function.

The Wrapper will strip the FILE_ATTRIBUTE_DIRECTORY from any incoming request to modify the attributes

of the file. Thus, it is not possible for a user, via this interface, to modify a file into becoming a directory (or

vice-versa.)

Further, the FILE_ATTRIBUTE_NORMAL bit will be sent to the FSD for otherwise “empty” requests in order

to ensure that the FSD can ascertain that a change in attributes is being attempted. This bit is not part of

the on-disk structure but is instead used to differentiate between “ignore this attribute field” and “clear all

attributes”.

Note: The FSDK does not modify or change any of these bits. Thus, it is the

responsibility of the FSD to set bits as the implementers see fit. For example, the

ARCHIVE bit may be set by the FSD as the result of a modification of the file. To the

 FSDK Programming Interface

106 ©| OSR Open Systems Resources, Inc.

extent possible, the FSDK attempts to avoid implementing file system level policy and

leaves this to the FSD.

Applications can, of course, request that these bits be modified. Calls to this interface that indicate such

changes are as a result of such application-level change requests.

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

107 ©| OSR Open Systems Resources, Inc.

FS_SET_EA

NTSTATUS

(*FS_SET_EA)(

 IN FS_FILE_HANDLE FileHandle,

 IN PVOID EABuffer,

 IN ULONG EABufferSize);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle against which the EA is being stored.

EABuffer — This buffer contains the extended attribute set for this file (if any).

EABufferSize — This value indicates the size of the EABuffer being passed to the FSD by the Wrapper.

Description:

This routine is used to set the extended attribute information associated with the specified file or directory.

If no EA is available, the EABuffer will be a null pointer and the EABufferSize will be set to zero. Otherwise,

the EABuffer will point to the buffer containing a FILE_FULL_EA_INFORMATION structure and EABufferSize

will indicate its size.

The FILE_FULL_EA_INFORMATION structure (from ntddk.h) is:

typedef struct _FILE_FULL_EA_INFORMATION {

 ULONG NextEntryOffset;

 UCHAR Flags;

 UCHAR EaNameLength;

 USHORT EaValueLength;

 CHAR EaName[1];

} FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION;

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

108 ©| OSR Open Systems Resources, Inc.

FS_SET_LENGTH

NTSTATUS

(*FS_SET_LENGTH)(

 IN FS_FILE_HANDLE FileHandle,

 IN LARGE_INTEGER AllocationSize,

 IN LARGE_INTEGER DataSize);

Status: Required Used if Present

 Media File Systems No (Yes, if FS-CREATE is supported) Yes

 Network File Systems No (Yes, if FS-CREATE is supported) Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle for which the size of the file is being set.

AllocationSize — The minimum amount of disk allocation to be provided for this file, in bytes.

DataSize — The size of the valid data section of the file.

Description:

This routine is used to control both the allocation and valid data portion information of a file. The allocation

of a file must always be at least as large as the valid data portion of the file.

The AllocationSize does not represent the actual amount of physical disk space allocated to the file. Instead,

it represents the amount of data that may fit in the space that has previously been allocated to this file.

Thus, a file system that implements any compression scheme (including “sparse storage”) must represent

the AllocationSize to be sufficiently large that the data of the file can fit into that space.

The DataSize represents the end of the file with respect to the amount of data that might fit into the file.

An FSD is free to implement the data storage of the file in whatever manner the implementers see fit. Thus,

even when allocation size information of the file is extended, the FSD may ignore such a request until a

subsequent I/O operation actually uses this information. Alternatively, an FSD may allocate even more

space than is requested in order to match the specific operational requirements of the underlying hardware.

Returns:

STATUS_SUCCESS – the operation was successful

STATUS_DISK_FULL – the operation failed because there was no disk space available to satisfy the request.

 FSDK Programming Interface

109 ©| OSR Open Systems Resources, Inc.

FS_SET_SECURITY

NTSTATUS

(*FS_SET_SECURITY)(

 IN FS_FILE_HANDLE FileHandle,

 IN PVOID SecurityDescriptor,

 IN ULONG SecurityDescriptorSize);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle on which the security descriptor is to be applied.

SecurityDescriptor — This buffer contains the self-relative format security descriptor to be stored with this

file (if any).

SecurityDescriptorSize — This value indicates the size of the SecurityDescriptor passed to the FSD from the

Wrapper.

Description:

This routine is used to save the Windows-format security information for the given file.

Support for FS_SET_SECURITY is optional. However, the FSD must support both FS_GET_SECURITY and

FS_SET_SECURITY if it supports either interface.

If the file should have no security descriptor (or the current security descriptor should be deleted) the

SecurityDescriptor will be a null pointer and the SecurityDescriptorSize will be set to zero.

Otherwise, the SecurityDescriptor will point to the buffer containing the Windows security information that

should be stored with the given file. The buffer pointed to by SecurityDescriptor is owned by the wrapper

and should not be modified by the FSD.

The security information contained in the buffer is generally not useful to the FSD. This interface provides a

simple mechanism that allows a file system to support standard Windows security policies by simply storing

and retrieving security information on a per file (or directory) basis. The wrapper performs all security

operations for the FSD if the FS_GET_SECURITY and FS_SET_SECURITY interfaces are implemented by the

FSD.

 FSDK Programming Interface

110 ©| OSR Open Systems Resources, Inc.

Returns:

STATUS_SUCCESS – the operation was successful

 FSDK Programming Interface

111 ©| OSR Open Systems Resources, Inc.

FS_SET_VOLUME_ATTRIBUTES

NTSTATUS

(*FS_SET_VOLUME_ATTRIBUTES)(

 IN FS_VOL_HANDLE FsdVolumeHandle,

 IN PFS_VOL_ATTRIBUTES VolumeAtttributes);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FsdVolumeHandle — The FSD-provided handle representing the volume to be used for this operation.

VolumeAttributes — The Wrapper-allocated buffer containing the general volume attributes.

Description:

This routine is used to modify the basic attributes associated with the given volume. Note that the FSD is

free to specify that any of these attributes are “read-only” and that they cannot be modified via this call.

Typically, this call is only used to modify the volume label.

Returns:

STATUS_SUCCESS – the volume label has been changed

 FSDK Programming Interface

112 ©| OSR Open Systems Resources, Inc.

FS_SHUTDOWN

NTSTATUS

(*FS_SHUTDOWN)(

 IN ULONG Stage);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

Stage — One of the following two values:

OW_SHUTDOWN INITIATE – indicates start of shutdown

OW_SHUTDOWN_COMPLETE – indicates termination of shutdown

Description:

This routine is used to advise the underlying FSD that a shutdown is in progress. It calls initially to notify the

FSD that shutdown has started. The FSDK will then dismount all volumes and, finally, notify the FSD that

shutdown processing has completed.

Returns:

Ignored.

 FSDK Programming Interface

113 ©| OSR Open Systems Resources, Inc.

FS_UNC_ROOT

VOID

(*FS_UNC_ROOT)(

 OUT PFS_FILE_HANDLE DirectoryHandle);

Status: Required Used if Present

 Media File Systems No No

 Network File Systems No Yes

 Pseudo File Systems No No

Parameters:

DirectoryHandle — An FSD-provided handle representing the root directory of the given FSD. This directory

handle can then be used in subsequent FSD operations.

Description:

This routine is used by the Wrapper to retrieve a valid handle to the root directory of the “UNC” form for the

FSD. This handle will be used for all future FSD operations when a UNC-style name is used.

Because these handles are opaque values to the Wrapper, one possible implementation of this would be to

use a “magic number” which indicated (in a subsequent call to FS_CREATE) that the directory being used

was the special UNC name directory.

The value zero is not allowed for use as a file handle.

Returns:

None.

 FSDK Programming Interface

114 ©| OSR Open Systems Resources, Inc.

FS_UNLOCK

NTSTATUS

(*FS_UNLOCK)(

 IN FS_FILE_HANDLE FileHandle,

 IN FS_LOCK_HANDLE LockHandle);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided handle identifying the given file.

LockHandle — The FSD-defined identifier for this particular lock.

Description:

This routine is used by the Wrapper to allow a network file system to implement a distributed byte-range-

locking scheme. If present, the Wrapper will call into the FSD to release a previously granted lock.

The LockHandle parameter was created by the FSD in a prior call to the FS_LOCK entry point and is used by

the FSD to identify this particular lock.

It is considered an error for an FSD to implement the FS_UNLOCK entry point unless the FS_LOCK entry point

is also defined.

Returns:

STATUS_SUCCESS – the lock was released

STATUS_RANGE_NOT_LOCKED – the memory range specified could not be unlocked because it was not

previously locked.

 FSDK Programming Interface

115 ©| OSR Open Systems Resources, Inc.

FS_UNMOUNT

NTSTATUS

(*FS_UNMOUNT)(

 IN FS_VOL_HANDLE FsdVolumeHandle);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No No

 Pseudo File Systems No Yes

Parameters:

FsdVolumeHandle — The FSD-provided handle representing the volume to be dismounted.

Description:

This routine is used by the Wrapper to dismount the given file system volume. It is an error for this to be

called if there are any outstanding references to any FSD objects provided to the Wrapper.

Upon completion of this routine, the FsdVolumeHandle is assumed to be invalid and no further references

to this file system can be made.

Note that if this interface is not supported, use of removable media is not allowed. Further, the file system

will not be called during shutdown processing.

Returns:

STATUS_SUCCESS – the volume has been successfully dismounted

 FSDK Programming Interface

116 ©| OSR Open Systems Resources, Inc.

FS_UPDATE_SHARE_ACCESS

NTSTATUS

(*FS_UPDATE_SHARE_ACCESS)(

 IN FS_FILE_HANDLE FileHandle,

 IN ULONG ShareAccess);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file or directory handle on which the share check is to be made.

ShareAccess – a combination of FILE_SHARE_READ,FILE_ SHARE_WRITE, and FILE_SHARE_DELETE options.

Descriptions:

This routine may be provided by an FSD to participate in arbitrating share access to a given file. When a file

is opened for access, the open operation indicates if the caller wishes to share access with anyone else

accessing the given file or directory.

When a subsequent attempt to open the file is made, its share access must be compatible with the share

access of any other process that currently has the file open.

Normally, the FSDK handles this share access internally. However, for multi-initiator file systems (e.g.,

network) it is essential that they arbitrate between all users of the file. When an FSD implements share

access checking, this will replace, not augment, the FSDK’s default handling of share access.

The FSD must return either SUCCESS, in which case the access is granted, or SHARING_VIOLATION, in which

case the access is denied.

If sharing is granted, the FSD is responsible for tracking this information until the file is either released

(which implicitly releases all sharing controls on the file) or a call to FS_REMOVE_SHARE_ACCESS is made.

See the Windows DDK Reference Manual on IoSetShareAccess, IoCheckShareAccess, IoUpdateShareAccess,

and IoRemoveShareAccess for further information.

Returns:

STATUS_SUCCESS – the share access is compatible.

STATUS_ SHARING_VIOLATION – the share access is not compatible.

 FSDK Programming Interface

117 ©| OSR Open Systems Resources, Inc.

FS_VERIFY

NTSTATUS

(*FS_VERIFY)(

 IN FS_VOL_HANDLE FsdVolumeHandle);

Status: Required Used if Present

 Media File Systems Yes Yes

 Network File Systems No No

 Pseudo File Systems No Yes

Parameters:

FsdVolumeHandle — The FSD-provided handle representing the volume to be verified.

Description:

The verify entry point is used by the Wrapper to request that the FSD verify the given volume is the same

volume as was previously present. A media file system FSD is responsible for reading the signature

information from the disk and verifying that the media has not changed.

This entry point is used to determine if the media in the device has changed. Thus, unlike mount, the OS

uses this entry point to validate that the media, which was previously mounted by this FSD, is still the same

volume.

Note that if an FSD fails a verification request, the Wrapper will treat the volume as dismounted. That is, a

separate call to FS_UNMOUNT will not be made to the FSD.

Subsequent user-level I/O operations that access the volume will fail, as the media is no longer mounted.

For pseudo file systems, it is the responsibility of the FSD to do verification of the pseudo-volume. What this

entails is up each individual FSD. It is the Pseudo FSD’s responsibility to do whatever additional processing is

necessary (including unmounting the pseudo volume) if the verify fails.

Returns:

STATUS_SUCCESS - the volume has not changed

STATUS_REPARSE - the volume has changed, the request should be re-issued against the volume (this is

actually for pseudo file systems so that they can handle verify failures of their underlying volume)

STATUS_WRONG_VOLUME - the volume has changed and no longer contains the same media

 FSDK Programming Interface

118 ©| OSR Open Systems Resources, Inc.

FS_WRITE

NTSTATUS

(*FS_WRITE)(

 IN FS_FILE_HANDLE FileHandle,

 IN LARGE_INTEGER FileOffset,

 IN PMDL Buffer,

 IN ULONG BufferSize,

 OUT PULONG BytesWritten);

Status: Required Used if Present

 Media File Systems No Yes

 Network File Systems No Yes

 Pseudo File Systems No Yes

Parameters:

FileHandle — The FSD-provided file handle against which this write operation is being performed.

FileOffset — The byte-range offset into the file where the I/O begins.

Buffer — A pointer to the MDL representing the pages where data should be read from the disk into

memory.

BufferSize — The number of bytes to be written from the region described by Buffer.

BytesWritten — The total number of bytes successfully written by the FSD to the backing store.

Description:

This entry point is used by the Wrapper to perform actual I/O. Because the normal model for the Wrapper is

to cache writes, this entry point will typically be called to handle a non-cached I/O request. Typically this is

to handle a write operation from the modified page daemon, or the lazy writer, both of which are dedicated

threads in the Windows system implementing slightly different write-back policies for cached data.

To facilitate the development of an FSD, the FSD may assume that the I/O operations adhere to the

following guidelines:

For physical media file systems, the FileOffset will be aligned on a sector-sized boundary. For all other file

systems, the alignment will be 512 bytes. In fact, we expect that this will be page aligned, but we use the

weaker requirement to support non-cached I/O directly from utilities and user applications, although such

are rare.

If this entry point returns STATUS_SUCCESS, BytesWritten will indicate the actual number of bytes written by

the FSD.

 FSDK Programming Interface

119 ©| OSR Open Systems Resources, Inc.

Upon completion of the Write operation by the FSD, BytesWritten must be less than or equal to BufferSize.

The Wrapper is responsible for managing the correct length of valid data in the file (although the FSD is

responsible for storage of that information). Thus, BytesWritten does not indicate that the size of the valid

data portion of the file has been extended.

The principal goal of this design is to ensure that I/O to the FSD falls on naturally aligned boundaries. Note

that typically, I/O is done in PAGE_SIZE units. Odd sizes are typically only used for “boundary conditions”

such as the last component (less than PAGE_SIZE) of a file.

Returns:

STATUS_SUCCESS – the operation was successful

STATUS_WRONG_VOLUME – the volume has changed and the read cannot be completed with the currently

available volume (verify is required.)

STATUS_NO_MEDIA_IN_DEVICE – the volume is not available because the media has been removed.

STATUS_INSUFFICIENT_RESOURCES – the FSD was unable to complete the I/O operation due to insufficient

memory resources

STATUS_DISK_CORRUPT – the file system structure on the disk is damaged.

STATUS_DISK_FULL – the volume is full and no additional data may be written to it.

 FSDK Programming Interface

120 ©| OSR Open Systems Resources, Inc.

 OPERATIONS REQUIREMENTS

Overview

In this section we describe the requirements for the various operations. The following table sets forth the

operation and indicates for media, network, and pseudo file systems if the operation is Required, Optional,

required Conditionally on support of FS_CREATE, or Unused.

A required operation must be present for the FSD or the FSD will not function properly.

An optional operation is one that will be used by the Wrapper if it is present. Otherwise, the Wrapper will

handle the error conditions.

An unused operation is one that cannot be used for the given type of FSD.

Operation Media

File

Systems

Network

File

Systems

Pseudo

File

Systems

FS_ACCESS O O O

FS_CHECK_LOCK O O O

FS_CLEAR O O O

FS_CONNECT U R U

FS_CREATE O O O

FS_DELETE O O O

FS_DELETE2 O O O

FS_DELETE3 O O O

FS_DISCONNECT U O U

FS_FLUSH O O O

FS_FSCTRL O O O

FS_GET_ATTRIBUTES R R R

FS_GET_EA O O O

FS_GET_NAMES O O O

 FSDK Programming Interface

121 ©| OSR Open Systems Resources, Inc.

FS_GET_NAME2 O O O

FS_GET_SECURITY O O O

FS_GET_UNC_VOLUME_ATTRIBUTES U O U

FS_GET_VOLUME_ATTRIBUTES R O R

FS_IOCTL O O O

FS_LINK O O O

FS_LOCK O O O

FS_LOOKUP R R R

FS_LOOKUP_BY_ID O O O

FS_LOOKUP_BY_OBJECT_ID

FS_LOOKUP_PATH O O O

FS_MOUNT R U R

FS_QUERY_PATH U R U

FS_READ R R R

FS_READ_DIRECTORY R R R

FS_READ_DIRECTORY2 R R R

FS_READ_DIRECTORY3 R R R

FS_READ_STREAM_INFORMATION O O O

FS_RELEASE R R R

FS_REMOVE_SHARE_ACCESS O O O

FS_RENAME C C O

FS_RENAME2 C C O

FS_SET_ACCESS_MODE O O O

FS_SET_ATTRIBUTES O O O

 FSDK Programming Interface

122 ©| OSR Open Systems Resources, Inc.

FS_SET_EA O O O

FS_SET_LENGTH C C C

FS_SET_SECURITY O O O

FS_SET_VOLUME_ATTRIBUTES O O O

FS_UNC_ROOT U O U

FS_UNLOCK O O O

FS_UNMOUNT O U O

FS_UPDATE_SHARE_ACCESS O O O

FS_VERIFY R U R

FS_WRITE O O O

Important Notes:

 FS_GET_NAME2, FS_DELETE3, and FS_RENAME2 must be supported if FS_LOOKUP_BY_ID or

FS_LOOKUP_BY_OBJECT_ID is supported.

 FS_READ_DIRECTORY or FS_READ_DIRECTORY2 or FS_READ_DIRECTORY3 must be

implemented but it is not necessary to implement all three.

 FS_RENAME or FS_RENAME2 must be implemented (conditionally), but it is not necessary to

implement both.

 FSDK Programming Interface

123 ©| OSR Open Systems Resources, Inc.

DATA STRUCTURES

Overview

In this section we describe the data structures used by this interface.

FS_VOL_HANDLE

typedef PVOID FS_VOL_HANDLE;

The FS_VOL_HANDLE is used to identify a file system volume. It is created by the FSD and used by the

Wrapper to identify the specific volume instance to the FSD.

FS_FILE_HANDLE

typedef PVOID FS_FILE_HANDLE;

The FS_FILE_HANDLE is used to identify a file or directory.

FS_LOCK_HANDLE

typedef PVOID FS_FILE_HANDLE;

The FS_LOCK_HANDLE is used to identify a lock created by an FSD. It is created by the FSD and used by the

Wrapper to identify the specific lock instance to the FSD.

FS_DELETE3_EXTENDED_INFO

typedef struct {

 USHORT Size;

 USHORT Version;

 FS_FILE_HANDLE ParentDirectoryHandle;

 PWSTR FileName;

 BOOLEAN ReleaseFileHandle;

} FS_DELETE3_EXTENDED_INFO, *PFS_DELETE3_EXTENDED_INFO;

This structure is used with the FS_DELETE3 entry point to indicate to the FSD more information about the

item being deleted. Size will be set to the size of the FS_DELETE3_EXTENDED_INFO structure and version

will be set to FS_DELETE3_EXTENDED_INFO_V1. This structure is initialized by the FSDK.

 FSDK Programming Interface

124 ©| OSR Open Systems Resources, Inc.

FS_DIRECTORY_ENTRY

typedef struct {

 ULONG EntrySize;

 ULONG LastDirectoryEntry;

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 LARGE_INTEGER Unused;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength; // storage-based

 ULONG Attributes;

 ULONG NameSize; // in bytes

 UCHAR ShortNameSize; // in bytes

 WCHAR ShortName[12];

 WCHAR Name[1]; // and for the balance of this entry

} FS_DIRECTORY_ENTRY, *PFS_DIRECTORY_ENTRY;

The FS_DIRECTORY_ENTRY is used by the FS_READ_DIRECTORY entry point to allow the Wrapper to

enumerate the contents of a directory.

Time stamps are to be in Windows standard format that is the number of 100 nanosecond intervals since

January 1, 1601.

FS_DIRECTORY_ENTRY2

typedef struct {

 ULONG EntrySize;

 ULONG LastDirectoryEntry;

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 LARGE_INTEGER Unused;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength; // storage-based

 ULONG Attributes;

 ULONG NameSize; // in bytes

 ULONG EaSize; // in bytes

 UCHAR ShortNameSize; // in bytes

 WCHAR ShortName[12];

 WCHAR Name[1]; // and for the balance of this entry

} FS_DIRECTORY_ENTRY2, *PFS_DIRECTORY_ENTRY2;

The FS_DIRECTORY_ENTRY2 is used by the FS_READ_DIRECTORY2 entry point to allow the Wrapper to

enumerate the contents of a directory.

Time stamps are to be in Windows standard format, that is the number of 100 nanosecond intervals since

January 1, 1601.

 FSDK Programming Interface

125 ©| OSR Open Systems Resources, Inc.

FS_DIRECTORY_ENTRY3

typedef struct {

 ULONG EntrySize;

 ULONG LastDirectoryEntry;

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 LARGE_INTEGER Unused;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength; // storage-based

 ULONG Attributes;

 ULONG NameSize; // in bytes

 ULONG EaSize; // in bytes

 UCHAR ShortNameSize; // in bytes

 WCHAR ShortName[12];

 LARGE_INTEGER FileID;

 WCHAR Name[1]; // and for the balance of this entry

} FS_DIRECTORY_ENTRY3, *PFS_DIRECTORY_ENTRY3;

The FS_DIRECTORY_ENTRY3 is used by the FS_READ_DIRECTORY3 entry point to allow the Wrapper to

enumerate the contents of a directory.

Time stamps are to be in Windows standard format that is the number of 100 nanosecond intervals since

January 1, 1601.

FS_FILE_ATTRIBUTES

typedef struct {

 LARGE_INTEGER CreationTime;

 LARGE_INTEGER LastAccessTime;

 LARGE_INTEGER LastModifiedTime;

 ULONG Attributes;

 LARGE_INTEGER LastByteWritten;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength;

 ULONG LinkCount;

 LARGE_INTEGER FileID;

} FS_FILE_ATTRIBUTES, *PFS_FILE_ATTRIBUTES;

The FS_FILE_ATTRIBUTES are used to describe the “generic” attributes associated with a given file or

directory. They correspond to the standard Windows file attributes, including the Attributes field which

indicates information including read-only, system, hidden, and archive.

 FSDK Programming Interface

126 ©| OSR Open Systems Resources, Inc.

FS_GET_NAMES2_EXTENDED_INFO

typedef enum {

 FsFileOpenByName = 1000,

 FsFileOpenById,

 FsFileOpenByObjectId,

} FS_FILE_OPEN_TYPE, *PFS_FILE_OPEN_TYPE;

typedef enum {

 FsCaseUnknown,

 FsCaseSensitive=2000,

 FsCaseInsensitive,

} FS_CASE_SENSITIVITY_TYPE, *PFS_FILE_OPEN_TYPE;

typedef struct {

 USHORT Size;

 USHORT Version;

 FS_FILE_OPEN_TYPE FileOpenType;

 FS_CASE_SENSITIVITY_TYPE FileCaseSensitivityType;

 UNICODE_STRING FileName; // READ_ONLY

 IN OUT OPTIONAL PFS_FILE_HANDLE ParentDirectory;

 IN OUT BOOLEAN FullPathNameReturned;

} FS_GET_NAMES2_EXTENDED_INFO, *PFS_GET_NAME2_EXTENDED_INFO;

This structure is used with the FS_GET_NAMES2 Entry point to indicate to the FSD more information about

the names requested. Size will be set to the size of the FS_GET_NAMES2_EXTENDED_INFO structure and

version will be set to FS_GET_NAMES2_EXTENDED_INFO_V1. This structure is initialized by the FSDK.

FS_STREAM_ENTRY

typedef struct {

 ULONG EntrySize;

 ULONG NameSize;

 LARGE_INTEGER ValidDataLength;

 LARGE_INTEGER DiskLength;

 WCHAR Name[1]; // balance of this entry; contains

 // portion of file name after the

 // colon (:)

} FS_STREAM_ENTRY, *PFS_STREAM_ENTRY;

The FS_STREAM_ENTRY is used to enumerate streams associated with a given file.

FS_VOL_ATTRIBUTES

typedef struct {

 LARGE_INTEGER CreationTime;

 ULONG SerialNumber;

 ULONG LabelLength;

 BOOLEAN Unused; // must be zero

 LARGE_INTEGER VolumeSize; // in allocation units

 LARGE_INTEGER FreeSpace; // in allocation units

 ULONG BytesPerAllocationUnit;

 ULONG DeviceType; // FS type, one of FILE_DEVICE_DISK_FILE_SYSTEM,

FILE_DEVICE_NETWORK_FILE_SYSTEM

 ULONG DeviceCharacteristics;

 WCHAR VolumeLabel[1]; // and for balance of entry

} FS_VOL_ATTRIBUTES, *PFS_VOL_ATTRIBUTES;

The volume attributes describe basic information about the underlying disk volume.

 FSDK Programming Interface

127 ©| OSR Open Systems Resources, Inc.

FS_EXTENDED_VOL_ATTRIBUTES

The following structure may optionally be used instead of the FS_VOL_ATTRIBUTES structure:

typedef struct {

 LARGE_INTEGER CreationTime;

 ULONG SerialNumber;

 ULONG LabelLength;

 BOOLEAN Flags;

 BOOLEAN Unused[3];

 LARGE_INTEGER VolumeSize; // in allocation units

 LARGE_INTEGER FreeSpace; // in allocation units

 ULONG BytesPerAllocationUnit;

 ULONG DeviceType; // FS type, one of DISK_FILE_SYSTEM,

NETWORK_FILE_SYSTEM

 ULONG DeviceCharacteristics;

 USHORT MaximumComponentNameLength;

 USHORT FileSystemNameLength;

 WCHAR VolumeLabel[1]; // and for balance of entry

 // file system name immediately follows the volume label

} FS_EXTENDED_VOL_ATTRIBUTES, *PFS_EXTENDED_VOL_ATTRIBUTES;

#define OW_VOL_ATTR_FLAG_EXTENDED (0x01)

In order to allow the FSDK to distinguish between the two, OW_VOL_ATTR_FLAG_EXTENDED must be set in

the Flags field, which corresponds with a previously unused field in the volume attributes structure.

File Types

The file types are used to distinguish the various potential types of objects represented by an

FS_FILE_HANDLE.

#define OSRFS_TYPE_FILE 0x1

#define OSRFS_TYPE_DIRECTORY 0x2

#define OSRFS_TYPE_SYMBOLIC_LINK 0x4

#define OSRFS_TYPE_OTHER 0xFF

File Attributes

File attributes passed by the Wrapper are those used and defined by Windows:

#define FILE_ATTRIBUTE_READONLY 0x00000001

#define FILE_ATTRIBUTE_HIDDEN 0x00000002

#define FILE_ATTRIBUTE_SYSTEM 0x00000004

#define FILE_ATTRIBUTE_DIRECTORY 0x00000010

#define FILE_ATTRIBUTE_ARCHIVE 0x00000020

#define FILE_ATTRIBUTE_NORMAL 0x00000080

#define FILE_ATTRIBUTE_TEMPORARY 0x00000100

#define FILE_ATTRIBUTE_RESERVED0 0x00000200

#define FILE_ATTRIBUTE_RESERVED1 0x00000400

#define FILE_ATTRIBUTE_COMPRESSED 0x00000800

#define FILE_ATTRIBUTE_OFFLINE 0x00001000

#define FILE_ATTRIBUTE_PROPERTY_SET 0x00002000

#define FILE_ATTRIBUTE_VALID_FLAGS 0x00003fb7

#define FILE_ATTRIBUTE_VALID_SET_FLAGS 0x00003fa7

Volume Attributes

Volume attributes used by the Wrapper have a one-to-one correspondence with the following Windows

volume attributes:

FILE_CASE_SENSITIVE_SEARCH

 FSDK Programming Interface

128 ©| OSR Open Systems Resources, Inc.

FILE_CASE_PRESERVED_NAMES

FILE_UNICODE_ON_DISK

FILE_PERSISTENT_ACLS

FILE_FILE_COMPRESSION

FILE_VOLUME_IS_COMPRESSED

FS_OPERATIONS

The following describes the total set of operations that are provided by the file system driver (FSD) and the

data structure used to represent those entries:

typedef struct _FS_OPERATIONS {

 UNICODE_STRING FsName; // name of file system driver

 ULONG Flags; // flags

 ULONG MaximumIoSize; // maximum I/O transfer allowed, 0 = default

 ULONG Attributes; // FSD Attributes - OW_FS_ATTR_* listed below

 ULONG ReadAheadSize; // Maximum read-ahead size

 ULONG WriteBehindSize; // Maximum write-behind size

 ULONG DirReadSize; // Maximum read size for directory enum, 0 = default

 PVOID UpcaseTable; // FSD's upper case table, 0 = default

 ULONG AlignmentRequirement; // e.g. sector size -1 (511 for a 512 byte sector.)

 ULONG Reserved[3]; // Reserved for future use

 PFS_OPERATIONS_FILTER FilterTable;

 FS_MOUNT Mount;

 FS_VERIFY Verify;

 FS_UNMOUNT Unmount;

 FS_FSCTRL FsCtrl;

 FS_GET_QUOTA GetQuota;

 FS_SET_QUOTA SetQuota;

 FS_GET_VOLUME_ATTRIBUTES GetVolAttributes;

 FS_SET_VOLUME_ATTRIBUTES SetVolAttributes;

 FS_LOOKUP Lookup;

 FS_LOOKUP_BY_ID LookupById;

 FS_LOOKUP_PATH LookupPath;

 FS_SET_ACCESS_MODE SetAccessMode;

 FS_RELEASE Release;

 FS_CREATE Create;

 FS_DELETE Delete;

 FS_RENAME Rename;

 FS_ACCESS Access;

 FS_GET_SECURITY GetSecurity;

 FS_SET_SECURITY SetSecurity;

 FS_LINK Link;

 FS_READ_SYMBOLIC_LINK ReadSymbolicLink;

 FS_WRITE_SYMBOLIC_LINK WriteSymbolicLink;

 FS_GET_ATTRIBUTES GetAttributes;

 FS_SET_ATTRIBUTES SetAttributes;

 FS_FLUSH Flush;

 FS_SET_LENGTH SetLength;

 FS_GET_EA GetEA;

 FS_SET_EA SetEA;

 FS_READ Read;

 FS_WRITE Write;

 FS_IOCTL Ioctl;

 FS_READ_DIRECTORY ReadDirectory;

 FS_READ_STREAM_INFORMATION ReadStreamInformation;

 FS_QUERY_PATH QueryPath;

 FS_CONNECT Connect;

 FS_DISCONNECT Disconnect;

 FSDK Programming Interface

129 ©| OSR Open Systems Resources, Inc.

 FS_UNC_ROOT UncRoot;

 FS_LOCK Lock;

 FS_UNLOCK Unlock;

 FS_GET_UNC_VOLUME_ATTRIBUTES GetUncVolAttributes;

 FS_CHECK_LOCK CheckLock;

 FS_UPDATE_SHARE_ACCESS UpdateShareAccess;

 FS_REMOVE_SHARE_ACCESS RemoveShareAccess;

 FS_DELETE2 Delete2;

 FS_READ_DIRECTORY2 ReadDirectory2;

 FS_RENAME2 Rename2;

 FS_OPEN Open;

 FS_CLOSE Close;

 FS_READ_COMPRESSED ReadCompressed;

 FS_WRITE_COMPRESSED WriteCompressed;

 FS_READ PagefileRead;

 FS_WRITE PagefileWrite;

 FS_CLEAR Clear;

 FS_GET_NAMES GetNames;

 FS_READ_DIRECTORY3 ReadDirectory3;

 FS_LOOKUP_BY_OBJECT_ID LookupByObjectId;

 FS_SHUTDOWN Shutdown;

 FS_DELETE3 Delete3;

 FS_GET_NAMES2 GetNames2;

 FS_RESERVED_FUNCTION ReservedFunctions[6];

} FS_OPERATIONS, *PFS_OPERATIONS;

This structure is used by the FSD when registering these operations with the Wrapper.

Most entries in this structure have previously been described (they are the entry points declared by the FSD

and used by the Wrapper.) The initial fields within this structure, however are used for the following:

FsName – this field is used to create the named file system device object. For media file systems, this is in

the root directory of the object manager name space. For network file systems, this is in the Device portion

of the object manager name space. For network file systems, this name is also used to create a symbolic link

to the file system. All other file system types are responsible for creating such a link.

Existing Windows media file systems do not create such a Win32-visible symbolic link

name.

Flags – this field indicates specific behavior of the underlying FSD. These flags correspond to the volume

attributes described in the previous section, Volume Attributes.

MaximumIoSize – this field is used by the Wrapper to determine the maximum single I/O transfer allowed as

part of a read or write I/O operation. The default value (64KB) corresponds with the maximum size used by

the Windows VM system. This value may be increased to allow applications doing non-cached I/O to

perform large I/O operations directly to disk. The wrapper will break oversized operations into a series of

smaller sub-operations. This value must be at least 64KB.

Attributes – this field identifies unique attributes of the file system. Currently the defined attributes and

their meaning:

 FSDK Programming Interface

130 ©| OSR Open Systems Resources, Inc.

 OW_FS_ATTR_NO_DIR_CACHE – indicates the file system in question does not wish to have the

FSDK Wrapper provide any directory caching support. Each directory enumeration request is

passed to the underlying file system.

 OW_FS_ATTR_NO_FILE_CACHE – indicates the file system in question does not wish to have the

FSDK Wrapper provide any data caching support. Each file system read request is passed to the

underlying file system.

 OW_FS_ATTR_NO_OPLOCKS – indicates the file system in question does not support oplocks.

Network file systems do not support oplocks regardless of this value.

 OW_FS_ATTR_COMPRESSION – indicates the file system in question wishes to support data

compression.

This option is reserved for future use.

 OW_FS_ATTR_SHORT_NAMES – indicates the file system in question supports short file names.

The FSDK Wrapper will provide 8.3 (DOS-compatible) names to the underlying file system. The

FSDK will look up the short name of a file in one of two ways: 1) If the FSD does not support the

FS_GET_NAMES entry point, then the FSDK will enumerate the target directory looking for the

file in order to get its short name. 2) If the FSD supports the FS_GET_NAMES entry point, then

this routine will be called to retrieve the short name of a file.

 OW_FS_ATTR_FSD_SHORT_NAMES – indicates that the FSD (not the FSDK) generates and

supports short names (it is assumed that the generated short names are 8.3 compliant).

Retrieval of these generated names is via the new FS_GET_NAMES function that was introduced

in FSDK V2.0. Support for this function is mandatory if the OW_FS_ATTR_FSD_SHORT_NAMES

flag is set. This bit would typically be set by a Pseudo File System that was layered upon an

existing File System such as NTFS or FAT, which generated their own short names.

 OW_FS_ATTR_WILDCARDS_LEGAL – indicates the file system in question supports Windows

wildcards as valid file name characters. If this option is not set, the FSDK rejects names with

wildcards contained within them.

ReadAheadSize – this is the default amount of “read ahead” support requested by the underlying FSD. The

default value of 64KB is used if this field is zero.

WriteBehindSize – this is the maximum amount of dirty data that may be cached by the FSDK Wrapper.

Once this limit is reached, subsequent writes are blocked until dirty, cached data can be written to disk. A

zero value indicates there is no maximum write behind size for the file system.

DirReadSize – this indicates the preferred buffer size for directory enumeration. A zero value indicates the

FSDK default (currently 2 * PAGE_SIZE) should be used.

UpcaseTable – this indicates the upper case table the FSD would like the FSDK to use when performing case

insensitive comparison operations. If no table is provided, the operating system default upcase table is

used.

 FSDK Programming Interface

131 ©| OSR Open Systems Resources, Inc.

Reserved – these values are reserved for future use.

This structure is initially set up by the FSD and is passed to the Wrapper as part of its normal registration

callOwRegister.

OW_WORK

This structure is used to describe a work function. See OwPostWork for information about utilizing this

structure within an FSD.

The structure is:

 typedef struct _OW_WORK {

 VOID (*WorkFunction)(PVOID ContextValue);

 PVOID ContextValue;

 } OW_WORK, *POW_WORK

 FSDK Programming Interface

132 ©| OSR Open Systems Resources, Inc.

WRAPPER IOCTL INTERFACE

Overview
A number of operations inherent in implementing particular types of file systems require processing or

coordination by both the FSD and the Wrapper. Where these operations are implemented from user-mode

applications, I/O Control Codes (IOCTLs) are used to pass these requests to the FSDK. Some requests cause

the Wrapper to take a particular action. Other pre-defined IOCTLs are simply passed along to the FSD. The

individual codes are described below.

OW_FSCTL_MOUNT_PSEUDO

This IOCTL is used to create a new “device” for the pseudo file system volume. The data structure

associated with this request is:

typedef struct {

 HANDLE PseudoVolumeHandle;

 USHORT PseudoDeviceNameLength;

 PWCHAR PseudoDeviceName;

 USHORT PseudoLinkNameLength;

 PWCHAR PseudoLinkName;

}OW_PSEUDO_MOUNT_INFO;

The PseudoVolumeHandle will be passed from the Wrapper to the FSD as part of mount processing, to allow

the pseudo volume handle to “mount” the new pseudo volume. The PseudoDeviceName indicates the

name that should be used when creating the new mount point in the “\Device” directory. The

PseudoLinkName is the name that should be used when creating a symbolic link in the “\DosDevices”

directory to the newly created device. If either name exists, the pseudo mount aborts and the entire

operation fail.

OW_FSCTL_MOUNT_PSEUDO2
This IOCTL is a superset of OW_FSCTL_MOUNT_PSEUDO. The only difference between the two IOCTLs is

that OW_FSCTL_MOUNT_PSEUDO2 allows passing the DeviceType and Characteristics. The data structure

associated with this request is:

typedef struct {

 HANDLE PseudoVolumeHandle;

 USHORT PseudoDeviceNameLength;

 PWCHAR PseudoDeviceName;

 USHORT PseudoLinkNameLength;

 PWCHAR PseudoLinkName;

 DEVICE_TYPE PseudoDeviceType;

 ULONG PseudoCharacteristics;

}OW_PSEUDO_MOUNT_INFO2;

PseudoDeviceType and PseudoCharacteristics will be copies into the newly created device object in the

DeviceObject->DeviceType and DeviceObject->Characteristics fields respectively.

 FSDK Programming Interface

133 ©| OSR Open Systems Resources, Inc.

OW_FSCTL_DISMOUNT_PSEUDO

This IOCTL is used to dismount a previously mounted pseudo file system volume. The data structure

associated with this request is:

typedef struct {

 HANDLE VolumeHandle;

 BOOLEAN Force;

} OW_PSEUDO_DISMOUNT_INFO;

The VolumeHandle is the handle of a FILE_OBJECT representing an open instance of the volume. Thus, this

parallels the standard Windows mechanism for dismounting a physical media volume: open the volume

(which yields a handle), dismount the volume, and close the volume.

Upon dismounting the volume all subsequent operations (except that final closure of the volume handle) are

invalid. The device object and symbolic link are deleted as part of the pseudo dismount process.

OW_FSCTL_PSEUDO_VOLUME_READ
This IOCTL is used to call the FSD with a pseudo volume read. Since the read is to the volume, FS_FSCTL will

be called by the FSDK with the following structure passed in the InputBuffer:

typedef struct {

 LARGE_INTEGER VolumeOffset;

 PMDL Buffer;

 ULONG BufferSize;

} OW_PSEUDO_VOLUME_IO_INFO;

The FSD must fill in the following structure in the OutputBuffer before returning to

the FSDK.

typedef struct {

 ULONG Bytes;

} OW_PSEUDO_VOLUME_IO_COMPLETE;

The FSDK will deallocate both the InputBuffer and the OutputBuffer.

OW_FSCTL_PSEUDO_VOLUME_WRITE

This IOCTL is used to call the FSD with a pseudo volume write. Since the write is to the volume, FS_FSCTL

will be called by the FSDK with the following structure passed in the InputBuffer:

typedef struct {

 LARGE_INTEGER VolumeOffset;

 PMDL Buffer;

 ULONG BufferSize;

} OW_PSEUDO_VOLUME_IO_INFO;

The FSD must fill in the following structure in the OutputBuffer before returning to the FSDK.

typedef struct {

 ULONG Bytes;

} OW_PSEUDO_VOLUME_IO_COMPLETE;

 FSDK Programming Interface

134 ©| OSR Open Systems Resources, Inc.

The FSDK will deallocate both the InputBuffer and the OutputBuffer.

OW_FSCTL_INIT

This value is provided to allow a network provider (such as the sample network provider in the FSDK) to

initialize its underlying file system. The actual data transferred via this call is not defined by the FSDK and is

private to the Network Provider and FSD.

The Wrapper does not implement this operation. Rather, it is passed along to the underlying FSD.

OW_FSCTL_ENUM

This value is provided to allow a network provider (such as the sample network provider in the FSDK) to

enumerate potential remote network resources. The actual data transferred via this call is not defined by

the FSDK and is private to the Network Provider and FSD.

The Wrapper does not implement this operation. Rather, it is passed along to the underlying FSD.

OW_FSCTL_CONNECT
The Network Provider uses this value when it wishes to create a new network connection. The Wrapper will

create any necessary symbolic link, as well as initialize internal data structures so that calls to the specified

drive letter will be handled correctly.

The connection to be made is described by the following data structure:

typedef struct {

 WCHAR ConnectionIdentifier;

 UCHAR ConnectionType;

 WCHAR ConnectionName;

} OW_FSCTL_CONNECT_INFO, *POW_FSCTL_CONNECT_INFO;

The ConnectionIdentifier is used to specify information about this particular connection. For a disk drive,

this connection identifier may be either null, indicating that no drive letter is associated with this

connection, or it may be a character between ‘C’ and ‘Z’ indicating that there is an association between the

Win32 drive letter and this connection. For a printer, this connection identifier must be a character

between ‘1’ and ‘9’ indicating that there is an association between the Win32 LPT printer port and this

connection.

The ConnectionType field indicates the specific type of connection being created. The values defined are:

OW_CONNECTION_DISK

OW_CONNECTION_PRINTER

The ConnectionName is a null-terminated wide character string that will be passed by the Wrapper to the

FSD at its FS_CONNECT entry point. This information is used by the Wrapper to create a symbolic name in

the Win32 address space, but the specific structure of this information is passed directly to the underlying

FSD; hence it may contain any information necessary to establish the connection.

 FSDK Programming Interface

135 ©| OSR Open Systems Resources, Inc.

It is possible for the FSD’s control application to pass additional information in the connect call. This is done

by adding such information beyond the terminating NULL character for the ConnectionName field.

This works because the FSCTL operation indicates the size of the buffer. The full buffer is captured and

passed from the FSDK to the FSD, although the FSDK only uses the null-terminated portion of the

ConnectionName field. Data beyond the NULL terminator is not interpreted, but it is provided to the

underlying FSD.

OW_FSCTL_DISCONNECT

This call is used by the Network Provider to delete an existing connection of any type. The Wrapper will

clean up internal state and delete any symbolic links that exit to support this connection. The FSD will be

called at its FS_DISCONNECT entry point as part of processing this request.

The following data structure is used to identify the volume to be disconnected:

typedef struct {

 WCHAR ConnectionIdentifier;

 UCHAR Force;

 WCHAR ConnectionName;

} OW_FSCTL_DISCONNECT_INFO, *POW_FSCTL_DISCONNECT_INFO;

The ConnectionIdentifier is used to identify this particular connection. The specific interpretation and

restrictions on this value are described in the OW_FSCTL_CONNECT section.

The Force parameter indicates if the connection should be deleted even if there are open, active references

to the file in question. An “active reference” refers to a file that is opened by a user-level application. The

Wrapper, as part of the disconnection sequence, closes files that remain open due to caching behavior of

the virtual memory system. The following table summarizes the behavior of the Wrapper depending upon

the Force parameter and whether or not there are any active references:

Force Value Open Files Result

FALSE NO Disconnect Successful

FALSE YES Disconnect Unsuccessful

TRUE NO Disconnect Successful

TRUE YES Disconnect Successful

The ConnectionName parameter is used if ConnectionIdentifier value is null in order to identify an unnamed

connection.

 FSDK Programming Interface

136 ©| OSR Open Systems Resources, Inc.

OW_FSCTL_GETCONNECTIONS

This IOCTL is used by a network provider to enumerate the list of all network connections currently known

to the Wrapper for the given file system. The returned information is described in a buffer encoded so that

the first four bytes represent the number of entries to follow. Then each entry consists of two bytes

representing the drive letter and an arbitrary number of bytes representing the name of the connection,

with a wide character NULL terminator. The termination of the list is indicated with two contiguous wide

character NULL terminators.

Note that as an alternative, the OW_FSCTL_GET_FULL_CONNECTIONS can be used to retrieve the identical

information in a slightly different format.

OW_FSCTL_GET_FULL_CONNECTIONS

This IOCTL is used by the Network Provider to enumerate the list of all network connections that are

currently known to the Wrapper for the given file system. The returned information is described by the

following data structure:

typedef struct {

 ULONG NumberOfEntries;

 OW_FSCTL_CONNECT_INFO Connections[1];

} OW_FSCTL_GETCONNECTION_INFO, *POW_FSCTL_GETCONNECTION_INFO;

The variable length array of Connections is terminated when both ConnectionIdentifier and

ConnectionName are the null character.

This implementation allows the caller to also determine the type of the connection in addition to the drive

letter and name of the connection.

 [FSDK] Programming Interface

137 ©| OSR Open Systems Resources, Inc.

INDEX

B

Buffer

Allocation 16

C

Caching

OwDisableFileCache 18

OwDisableVolumeCache 19

OwEnableFileCache 20

OwEnableVolumeCache 21

OwFlushCache 22

OwNotifyDirectoryChange 14, 33

OwPurgeCache 22, 36

OwSetReadAhead 41

OwSetWriteBehind 14, 25, 26, 42

Control

OwGetDirectorySearchString 25

OwGetFsdHandleForFileObject 26

OwGetTopLevelIrp 29

OwIoControl 30

Create 51, 114, 121

D

Delete 53, 54, 56

Devices

Media Devices

Mount 85

OwGetCharacteristics 24

OwGetMediaDeviceObject 27

Sending IOCTL codes to 30

Pseudo Devices

Mount 85

OwGetPseudoDeviceObject 28

Directory

Change Notification

OwNotifyDirectoryChange 14, 33

Create 51

Delete 53, 54

Enumeration

OwGetDirectorySearchString 25

Lookup 79, 81, 82

Lookup 83

Read 89, 91, 125

Rename 100, 102

F

File

Attributes

 [FSDK] Programming Interface

138 ©| OSR Open Systems Resources, Inc.

Query 62, 106

Set 106

Clear 48

Control Operations 74

Create 51

Delete 53, 54

Truncate 104, 106, 109

Extended Attributes

Query 64

Set 108

Link 76

Lookup 79, 81, 82

Lookup 83

Names 66, 67

Read 87, 104

Read Only 44, 104, 105

Release 98

Rename 100, 102

Security

Query 44, 68, 110

Set 44, 110

Write 104, 106, 109, 119

File Identifiers

Lookup 79, 80, 81, 82, 83

File System Control 60

Flush 59

OwFlushCache 22

L

Locking

Check 47

Lock 77, 115, 124

Unlock 115

Lookup 79, 80, 81, 82, 83

M

Mount 49, 85

N

Network Drive

Connect 135

Connect 49

Disconnect 58, 136

P

Purge

OwPurgeCache 22, 36

R

Read 87, 89, 91, 94, 97, 104, 125, 126

OwMediaRead 31

 [FSDK] Programming Interface

139 ©| OSR Open Systems Resources, Inc.

Read Directory 94

Registration

OwDeregister 17, 39

OwDeregistration 12, 17

OwRegister 12, 17, 38, 132

Release 51, 80, 98, 103

Rename 100, 102

S

Security 44, 99, 104, 105, 110, 117

Descriptor 16

Sharing

Remove 99, 117

Update 99, 117

Shutdown 113

Streams

Read 97

U

Universal Naming

Query Path 86

Root Directory 70, 114

Unmount 116, 118

V

Verify 118

Volume

Attributes

Query 71

Set 112

Verify 118

W

Worker Threads 35

Write 22, 104, 119

OwMediaWrite 32

