

OSR FILE ENCRYPTION SOLUTION FRAMEWORK

CUSTOM PROVIDERS KIT
DEVELOPERS’ GUIDE
V1.7

FESF Custom Providers Kit Developers’ Guide

2

© 2016-2021 OSR Open Systems Resources, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any

form or by any means -- graphic, electronic, or mechanical, including photocopying, recording, taping, or

information storage and retrieval systems -- without written permission of OSR Open Systems Resources, Inc.,

889 Elm St, 6th Floor, Manchester, New Hampshire 03101 USA | (603) 595-6500 | info@osr.com

OSR, the OSR logo, “OSR Open Systems Resources, Inc.”, and “The NT Insider” are registered trademarks of

OSR Open Systems Resources, Inc. All other trademarks mentioned herein are the property of their owners.

U.S GOVERNMENT RESTRICTED RIGHTS

This material is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject

to restrictions as set forth in subparagraph (c)(1)(ii) of The Right in Technical Data and Computer Software

clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software--

Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is OSR Open Systems Resources, Inc.

Manchester, New Hampshire 03101.

FESF Custom Providers Kit Developers’ Guide

3

1 FESF Customer Providers Kit Overview

1.1 Introduction
The FESF Custom Providers Kit (Providers Kit) allows you to easily build per file encryption solutions in kernel

mode. The kit does all the “heavy lifting” of integration with the necessary Windows sub-systems and allows

you to just customize the parts which are of value to your case. This customization is done by implementing

your own Provider.

A “Provider” is a subsystem which implements a particular piece of the functionality needed to build a per file

encryption solution. The Providers Kit facilitates the development of three different types of Providers:

• The Policy Provider (referred to as DtSupport) – This Provider implements the encryption policy

encompassing, for example:

o Is a newly created file to be encrypted?

o Does an individual access see a raw view, a decrypted view, or is the access denied?

o How precisely is a newly created file to be encrypted and how should a recently created file

be decrypted (Key Management)?

You implement a Policy provider by replacing one or two modules in one of the drivers supplied in

the Providers Kit.

• The Encryption Provider (DtCrypto). – This Provider is responsible for taking the opaque information

provided by the Policy Provider, and a stream of data and encrypting or decrypting it suitably.

You implement an Encryption Provider by replacing one module in one of the drivers supplied in the

Providers Kit.

• The On Disk Provider (Ds) – The On Disk Provider is responsible for preserving the encrypted data

and its associated metadata on disk. FESF assumes that there is an on disk file, but equally it is

assumed that the On Disk Provider may change the size of the file on disk.

You implement an On Disk Provider by implementing a series of functions in a dispatch table and

registering that table with a driver. On Disk Providers have the most complicated role to fulfill and

have to deal with several unexpected side-effects related to Windows file system logic.

Although each Provider is logically independent, there are also dependencies among the Providers. For

example, a Policy Provider cannot successfully specify the use of an encryption method that the Encryption

Provider doesn’t support. Nor could a Policy Provider ask the On Disk Provider to save metadata that is larger

than its maximum capacity. There are similar constraints between the Encryption and On Disk Providers

which relate to the rounding constraints of some crypto mechanisms.

FESF Custom Providers Kit Developers’ Guide

4

As part of the Providers Kit, we include at least one Reference Implementation for each type of Provider.

These allows you to get started quickly and also serve as code examples of some of the issues that each of

the provider types must manage.

1.2 Differences from Other OSR FESF Kits
The OSR File Encryption Solution Framework comprises a series of different kits, each with its own, specific,

contents. This section describes the two primary types of FESF kits the OSR licenses.

The FESF Custom Providers Kit allows the development of kernel-mode code, in support of your own on

access encryption solution. The kit includes the generic FESF kernel-mode source code (both for reference

and for your potential customization) as well as one or more kernel-mode reference implementations of each

Provider type that it supports. Using the FESF Custom Providers Kit, you can control everything about the

implementation of your encryption product, from the policy that determines which view of a file a given user

sees to how the encrypted form of a file is stored on the media.

In contrast to this, the Base OSR FESF Kit allows the development an on-access encryption product, with

custom policy and encryption methods, with no kernel-mode coding required. The Base OSR FESF Kit

includes (signed) binary-only versions of the FESF kernel-mode components. It also includes source code for

all user-mode FESF components as well an extensive, working, sample encryption solution.

FESF Custom Providers Kit Developers’ Guide

5

2 Notes on Implementing an On Disk Provider for UDF
During qualification on UDF we encountered several issues around the use of UDF on removable media. In

several cases we have been able to make FESF-on-top-of UDF behave better than UDF alone, particularly

when it is subjected to overwriting. However great caution is advised when implementing and testing your

On Disk Provider on UDF and removable media.

The greatest issue appears to be related to handling files when the file data transitions from being stored in-

line as part of the UDF file system’s metadata to being stored in data-only blocks on the media. Under these

conditions it appears that UDF starts to cache data with no respect for coherency from the upper layers. This

exacerbates its already problematic behavior under rewrite loads.

The only solution we found was to force our on disk provider to never create a file which is so small as to be

embedded. This is possible since FESF allows the on disk size of the file to be hidden from the applications.

We also imposed a minimum one page sector size on all UDF files implemented using our On Disk Provider.

We introduced a similar constraint into the raw path - any set eof below a certain threshold is converted first

into a set eof at that threshold and then of the required size. It should be noted that as of FESF V1.3

extending writes are no longer issued by the Isolation filter which means the FileSetEndOfFileInformation is

the only call to extend a file, although FileSetAllocationInformation can still truncate a file.

FESF Custom Providers Kit Developers’ Guide

6

3 FESF Providers Kit: Architecture Overview

Data Transformation
(Upper)

Data Transformation
(Lower)

Isolation Filter

Policy Provider

OSRDs and Dir Cache

Communications
(optional)

Network
RDR

Local FS

Network

Kernel Mode

User Mode

= OSR Provided

= Microsoft/Other Provided

= Client Provided

Disk

On Disk Provider

Crypto Provider

The FESF Custom Providers Kit consists of a stack of four (4) file system MiniFilters, all set at “altitudes” which

are distinguished only by the decimal point. This means that one registered altitude can be used for all four

drivers.

Each of the four MiniFilters serves a specific purpose, which is described in the following sections. Note that

the default names of the MiniFilters can all be changed as part of developing your overall product.

The following sections describe each of the provided MiniFilters, starting “at the bottom” architecturally

(closest to the File System).

3.1 The Support Driver
The name of this driver in the distributed kit is OsrSupport. It attaches at altitude BaseAltitude+0.01.

Within the Providers Kit, the main function of this driver is to provide functionality that needs to be shared

between the other Providers Kit drivers. This is mostly related to centralized locking as well as process and

thread management. As a result, this driver is implemented as a kernel-mode DLL.

Note that in the Base OSR FESF Kit (that is, not the Providers Kit) this driver is also used to perform various

file name resolution functions which are not available in user mode.

FESF Custom Providers Kit Developers’ Guide

7

3.2 The Data Storage (DS) Driver: On Disk Provider
The name of this driver in the distributed kit is OsrDs2. It attaches at altitude BaseAltitude+0.2.

The function of this driver is to manage any On Disk Structure (ODS) manipulation, including the separation of

raw access (which the On Disk Provider never sees) from encrypted access.

The Data Storage Driver is the host for the On Disk Provider. This driver also hosts caching of directory

correction entries.

It is unlikely that you will need to change any of the existing code in this driver. If you need to add an On Disk

Provider, just add your code and include it according to the documentation provided later in this document.

If you discover a need to change code in this driver, please contact OSR.

3.3 The Isolation Driver
The name of this driver in the distributed kit is OsrIsolate. It attaches at altitude BaseAltitude+0.5

This driver is by far the largest and most complex of the four. It contains, among other functions:

• All the logic required to interact with the Windows Cache Manager

• All the logic to ensure coherent views between encrypted and unencrypted data

• Code to finesse the issues around Transactions

It does not host any providers and does not have any configuration possible (its functioning is entirely

managed from the Policy and Encryption (DT) driver).

There should never be any need to change any of the code in this driver. If you discover a need to change

code in this driver, please contact OSR.

3.4 The Policy and Encryption (DT) Driver: Policy and Encryption Providers
The abbreviation “DT” stands for “Data Transformation”, which was the name by which these providers were

jointly, previously known. The name of this driver in the distributed kit is OsrDt2. It attaches at altitudes

BaseAltitude+0.3 (encryption) and BaseAltitude+0.8 (policy).

The primary functions of this driver are:

• To act as a host for a Policy Provider

• To act as a host for an Encryption Provider

• To interface with, and to control (based on the Policy Provider’s guidance), the functions of the

Isolation Driver and the Data Storage Driver.

To add a Policy Provider, edit DtSupport.cpp and DtSupportCommon.cpp and add an Encryption Provider by

editing DtCrypto.cpp. If you discover a need to change code outside these three modules, please contact

OSR.

FESF Custom Providers Kit Developers’ Guide

8

4 Reference Implementation Overview
As previously mentioned, the Providers Kit includes at least one reference implementation for each Provider

type. These reference implementations are intended to illustrate the use of the interfaces provided by FESF,

and to serve as a starting point for the development of your own Provider.

The reference implementations supplied for each Provider type are described in the following sections.

4.1 Policy Provider Reference Implementations
There are two Policy Provider reference implementations included as part of the Providers Kit. The first is the

Providers Kit Policy Provider. The second is the kernel-mode portion of the Base OSR FESF Kit Policy Provider.

These are described below.

4.1.1 The Providers Kit Policy Provider Reference Implementation
The Providers Kit Policy Provider reference implementation is contained in the files DtSupportProvider.cpp

and DtSupportCommon.cpp. It implements the simplest possible, useable, policy purely for the purposes of

demonstration. That policy is:

• Every new file that is created is encrypted

• Everyone gets access to encrypted files

• No operation is ever vetoed.

A registry setting provides a list of DOS devices to which the above policy will apply. The key used to encrypt

a file is stored in text form as part of the metadata associated with the file.

4.1.2 The Base OSR FESF Kit Policy Provider Reference Implementation
The Providers Kit also includes the kernel-mode portion of the Policy Provider that is shipped as part of the

OSR FESF Product. This code is contained in the files DtSupport.cpp, DtSupportCommon.cpp and in several

additional support modules. This reference implementation is significantly more complex than the Providers

Kit Policy Provider.

Because policy is determined in the OSR FESF Product in user-mode, the kernel-mode portions of the Policy

Provider implement an inverted call down to user mode. While the Base OSR FESF Kit Policy Provider is

included for completeness, OSR does not recommend it as a good sample from which to learn FESF or from

which to start your development of your own Policy Provider. This is because it is at once not demonstrative

enough and too complex to be very useful.

4.2 Encryption Provider Reference Implementation
This is the Encryption Provider used by the Base OSR FESF Kit. It uses the Windows CNG subsystem to

perform encryption operations. The Encryption Provider reference implementation is configured entirely

from the registry in a format which is a thin veneer on the named property based interface natively used to

configure CNG. The name which the Policy Provider communicates to the Encryption Provider is the name of

a registry key in a known location which contains the parameterization for that particular provider.

The reference implementation uses ESSIV to generate the initialization vector.

The code for the Encryption Provider is contained in the file DtCrypto.cpp.

4.3 On Disk Provider Reference Implementation
The On Disk Provider reference implementation is contained in the file DsSodsDispatch.cpp and several

associated modules.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx

FESF Custom Providers Kit Developers’ Guide

9

This is the provider used by the Base OSR FESF Kit. Despite being the “Slim/Smart/Simple” On Disk Structure

(SODS) it is complex, running to nearly 40K lines of code. This is not the place to describe how it works;

rather we shall briefly describe the format it implements. For more details see the document “Simple ODS

Design”.

The general idea is that the user data is prefixed with a header region which contains the metadata that the

DT and crypto layers need. Additionally, we ensure that once a file has been converted to SODS format, its

on-disk length will always correspond to a specific tag (that the on-disk length in hexadecimal representation

always ends 0xF5).

In this implementation, application data (and metadata) is usually stored on block boundaries, but as an

exception, if the data and metadata can be stored in less than 0xFF5 then the header, data and metadata are

all rolled up into one appropriately sized block.

FESF Custom Providers Kit Developers’ Guide

10

5 Getting Started
The FESF Custom Providers Kit is described by a single Microsoft Visual Studio (VS) Solution. This VS Solution

builds the four drivers that comprise the kernel mode part of the FESF Solution. As shipped, it builds the Base

OSR FESF Kit Policy Provider. We ship you this VS Solution to demonstrate how a real solution (the Base OSR

FESF Kit) is built.

Getting started with the FESF Custom Providers Kit consists of:

• Configuring the DT project to build with the Providers Kit Policy Provider

• Building the solution

• Installing the drivers on your target machine.

• Configuring the Policy Provider and Encryption Provider appropriately

5.1 Configuring the DT project and building the solution
This step comprises removing the modules associated with the Base OSR FESF Kit Provider Policy, adding the

module associated with the Providers Kit Policy Provider, and adjusting the build properties appropriately.

• Open the FESF solution in Visual Studio (with the associated WDK)

• Open the OsrDt2 project and remove the following files (which are now redundant from the project)

o DtAccessCache.h

o DtCommsApi.h

o DtCommsRequests.h

o DtCommsStructs.h

o DtAccessCache.cpp

o DtComms.cpp

o DtCommsDevice.cpp

o DtCommsRequest.cpp

o DtCsq.cpp

o DtSupport.cpp

• Add the following file

o DtSupportProvider.cpp

• Select the OsrDt2 Properties and under “C/C++” select “Preprocessor”.

o Select All configurations, All Platforms and add the following Preprocessor Definition:

“NO_UMODE_COMMS”.

• Build the entire solution for your preferred Platform.

The Solution should build without warnings or errors, with /W4 and with Code Analysis (all rules) enabled in

the build. The one exception to this is the warnings you receive about “PnPLockdown not being set to 1 in

the provided example INF files. Not setting it to 1 makes development/debugging easier. You may choose to

specify “PnPLockdown=1” in the [Version] section of your released product’s INF files.

5.2 Installing and Configuring Your Target Machine.
• Move the four SYS files produced by the previous build process, and their associated INF files, to your

target system and install them using the INF files. Note: DO NOT REBOOT YET.

• To Configure the Policy Provider: Apply the file src\dt\volumes.reg. This configures the provider to

only put the F: drive into policy.

FESF Custom Providers Kit Developers’ Guide

11

• To Configure the Encryption Provider: apply the file src\dt\aes.reg. This declares an algorithm called

“Example-AES”. Its uses AES and has the property “ChainingMode” set to be “ChainingModeCBC”

5.3 Testing
After successfully completing the steps listed in Installing and Configuring Your Target Machine, you can

reboot your target machine. When it comes back up it will be encrypting all files on the F drive. To test this,

create a file on F:, then either (a) detach the driver OsrDt2 from the drive, or (b) unplug and move the F: drive

to another system, and inspect the file. Note that it is indeed encrypted.

FESF Custom Providers Kit Developers’ Guide

12

6 Customizing Providers
After you’ve been able to successfully build and deploy the FESF Custom Providers Kit using appropriate

reference implementations for each of the Provider types, you can start customizing the Provider(s) of your

choice. You do this by implementing the various callback functions described in the remainder of this

document.

6.1 Custom Policy Provider
As mentioned above, you develop a Policy Provider by replacing certain APIs in the OsrDt2 drivers. These

functions are defined in DtSupport.h and are exactly those contained in the two modules

DtSupportProvider.cpp and DtSupportCommon.cpp. The choice of whether a function is in one module or

another is somewhat arbitrary, but in general DtSupportProvider.cpp contains functions that you will almost

certainly want to replace and DtSupportCommon.cpp contains functions that you will probably not want to

replace, or whose function has been carefully crafted during testing the release of FESF.

6.1.1 Policy Provider Structures and Functions
The file DtStructs.h defines several structures which are passed to the functions below. You may wish to

extend these if needed. Of particular interest are the structures associated with the Filter Manager Contexts

(Instance and Stream). However, you need to be aware that the DT filter has two instances for any given

volume (and hence any given object will have two contexts applicable). The structures passed to the APIS

listed below are all those associated with the upper instance.

All the function names are prefixed with the word DtSupport and the documentation for each one is given in

the Policy Provider Functional Reference section.

6.1.2 A Note about SRV
The default DtPrePolicy code handles create requests originating in SRV. SRV is usually made raw at this

stage. If you are not editing DtPrePolicy and you want to encrypt opens from SRV, you can change this

default by setting the SrvIsRaw value in the Parameters key of the DT driver’s registry settings.

At this stage, appropriate calls will have the DT_REQUEST_FROM_SRV flag set. In order for any of this to

work, the HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\enableecp must be set to a

DWORD value of one (0x01). Our sample solution sets this value during installation.

6.2 Custom Encryption Provider
The API to the Encryption Provider abstracts away the details of buffer handling in the I/O path from the

implementation of encryption. The Encryption Provider therefore performs exactly two tasks: Encryption

and Decryption of the provided buffers.

The implementation of an Encryption Provider can be entirely self-contained – that is to say that no detail of

the implementation of the encryption need be visible outside the module(s) implementing this provider. All

the information that it needs to have preserved between calls is passed around using the opaque

PDT_CRYPTO_ALGORITHM structure and the opaque PDT_CRYPTO_KEY structure.

The reference implementation demonstrates how this is achieved.

6.2.1 Encryption Provider Structures and Functions
The Encryption Provider provides and consumes two data structures. The layout of these structures is

entirely under the control of the implementer of the package and their contents are opaque to other parts of

FESF Custom Providers Kit Developers’ Guide

13

the system. The documentation for these structures and the Encryption Provider functions is in the

Encryption Provider Functional Reference section.

6.3 Custom On Disk Provider
In contrast to a Policy Provider, an On Disk Provider is distinct from the driver and does not share data

structures; this is because, at least in theory, multiple on disk structures can be supported in a single FESF

instance.

You develop an On Disk Provider by writing support functions that will then be called at appropriate times by

the surrounding FESF DS MiniFilter. Your On Disk Provider’s initialization code inserts pointers to these

functions into a dispatch table, along with your On Disk Provider name. This dispatch table is then registered

with FESF.

The DS Filter which hosts your On Disk Provider is architecturally capable of supporting multiple on disk

providers, however in this version of the kit only one provider may be present and registered. This

registration is done by defining (as a C++ preprocessor property) the name “SINGLE_DISPATCH” to be the

name of the dispatch table you provide.

6.3.1 Registration Data Structure
The registration data structure is of type _DS_DISPATCH_TABLE which is defined, alongside all the types it

references, in the header file DsImplApi.h.

struct _DS_DISPATCH_TABLE {

 //

 // Used to keep a list of DS implementations. Currently

 // initialized at driver entry and never touched thereafter.

 //

 LIST_ENTRY DispatchList;

 //

 // The name is used by the calling code to differentiate

 // between drivers when we are called to stamp an ODS into

 // a stream.

 //

 UNICODE_STRING Name;

 //

 // Other function pointers are as described above.

 //

 DS_SETUP Setup;

 DS_TEARDOWN TeardownDs;

 DS_SETUP_VOLUME SetupVolume;

 DS_DETECT_STATE DetectState;

 DS_RECOVER_FILE RecoverFile;

 DS_READ_DT_HEADERS GetHeaders;

FESF Custom Providers Kit Developers’ Guide

14

 DS_TEARDOWN_OBJECT TeardownStreamObject;

 DS_TEARDOWN_OBJECT TeardownVolumeObject;

 DS_CONVERT Convert;

 DS_CONVERT_EXISTING ConvertExisting;

 DS_MARK_INVALID MarkInvalid;

 DS_BOOLEAN_CALL IsValid;

 DS_SIMPLE_CALL IncrementVolatile;

 DS_SIMPLE_CALL DecrementVolatile;

 DS_SIMPLE_CALL IncrementNoWriteShare;

 DS_SIMPLE_CALL DecrementNoWriteShare;

 DS_GET_ATTRIBUTES GetAttributes;

 DS_PRE_CALL PreSetInfo;

 DS_POST_CALL PostSetInfo;

 DS_PRE_CALL PreReadWrite;

 DS_POST_CALL PostReadWrite;

 DS_CLOSE LastWriteableCleanup;

 DS_CLOSE LastWriteableClose;

 DS_IS_POTENTIALLY_ENCRYPTED IsPotentiallyEncrypted;

 DS_WRITE_DT_HEADER WriteHeader;

 DS_GET_EXTEND_FILE ExtendFile;

 DS_REGISTER_OPEN RegisterOpen;

};

6.3.2 On Disk Provider Functions
In the On Disk Provider Functional Reference a typical declaration is given, rather than the typedef line which

defines the types in the registration data structure.

FESF Custom Providers Kit Developers’ Guide

15

6.3.3 Validity Management APIs
An ODS implementation will often need to know whether the on disk representation has changed or not

since it was last called; this will allow it to cache on-disk information. Things which may cause the on disk

representation to change include:

• A destructive create

• A raw write to the file

• At any time on the network the file may change unless all opens on this node disallow write sharing

The DS Filter and the On Disk Provider cooperate in maintaining this information. In practice, your On Disk

Provider should probably just copy the implementation in the reference provider, but you are free to change

it. The APIs involved are:

BOOLEAN

IsValid(

 In PVOID StreamContext

)

Do we currently believe this file to be valid?

VOID

MarkInvalid(

 In _Notnull_ PVOID VolumeContext,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PVOID StreamContext

);

Something has happened to mark the file invalid.

VOID

DsSodsIncrementVolatile(

 In _Notnull_ PVOID StreamContext

);

VOID

DsSodsDecrementVolatile(

 In _Notnull_ PVOID StreamContext

);

The number of reasons why a Context may become invalid has gone up/down. This is usually associated with

a write or a set information on a raw open.

VOID

DsSodsIncrementNoWriteShare(

 In _Notnull_ PVOID StreamContext

);

VOID

DsSodsDecrementNoWriteShareCount(

 In _Notnull_ PVOID StreamContext

);

The number of opens for no write share has gone up/down.

FESF Custom Providers Kit Developers’ Guide

16

6.3.4 On Disk Support Functions
In addition to the On Disk Provider functions, there are a number of On Disk Support functions.

The Directory Correction support functions are defined/contained in:

Header: FESFDirCorrection.h

Lib: Misc.lib

The Process and Thread support functions are defined/contained in:

Header: PsSup.h

Lib: OsrSupport.lib

The functions are described in the On Disk Support Functional Reference.

FESF Custom Providers Kit Developers’ Guide

17

7 Custom Configuration

7.1 General Customization
The INF files shipped with the Providers Kit serve as examples of how to install the four drivers which

comprise the kit. There are a number of registry settings that need to be set to customize your solution and

to control how the kit works. In addition, the header file FESFConfig.h contains some information which

you may wish to change, notably:

• MONADNOCK_PRODUCT_NAME

• MONADNOCK_COMPANYNAME_STR

• MONADNOCK_LEGALCOPYRIGHT

• MONADNOCK_SUPPORT_CONTACT

• PRODUCT_PRODUCT_RELEASE_LEVEL_STR

• PRODUCT_PRODUCT_RELEASE_LEVEL_STR

• MONADNOCK_BUILD_ENV

These are all used to fill values in the resource files for the drivers (which in turn become user visible

properties in the drivers).

Additionally, MONADNOCK_MIN_BLOCK_SIZE defines the unit of encryption. Since this may affect how chaining

operates, you are advised to NEVER change this value after your first customer ship.

7.2 Registry Setting for SRV
As noted above, HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\enableecp

must be set to a DWORD value of one (0x01) in order that SRV detection functions correctly.

7.3 Configuring the DT Driver
The DT Driver allows for some behavior changes to be made by changing the registry.

1. If you change the names of the drivers you need to make configuration changes to the registry for the DT

Driver as described below.

2. The reference implementation for the Encryption Provider uses the

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Algorithms key to control its

parameterization.

3. You are at liberty to use the registry to control the behavior of your providers. The Registry Path is

provided to the initialization functions for both the Encryption and Policy Provider.

Other behavior of the DT Driver can be adjusted by setting values in the

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters key.

7.3.1 Changing the Driver Names
If you decide to change the names of your drivers or instances, then the DT Driver, which choreographs the

loading (if needed) and attaching of the various filters, needs to be told about this.

To change driver names, you need to provide the DT driver with the name of the Isolate and the DS drivers

(defaults are OsrIsolate and OsrDs2, respectively) by setting the following REG_SZ values to the driver names:

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters\IsolateDriverName

FESF Custom Providers Kit Developers’ Guide

18

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters\DsDriverName

If you change the name of the Instances that the drivers attach as (not recommended), this information must

be provided to the DT driver by setting the following REG_SZ values under the key:

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters

• IsolateInstance – The identifier for the Isolate driver Instance (default is “Isolate Instance”)

• DsInstance – The identifier for the DS driver instance (default is “Ds Instance”)

• UpperInstance – The identifier for the DT’s upper instance (default is “DtUpperInstance”)

• LowerInstance – The identifier for the DT’s lower instance (default is “DtLowerInstance”)

7.3.2 Registry Parameters to Customize the DT Driver

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters

Value Name: ByPassProcesses

Value Type: REG_MULTI_SZ

Value: <Lists processes to bypass >

This REG_MULTI_SZ registry value is used to provide input to the function:

BOOLEAN

DtIsExcludeProcess(

 PUNICODE_STRING Name

);

The reference implementation makes use of this in the DtSupportPrePolicy callback (in
DtSupportCommon.cpp).

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters

Value Name: SrvIsRaw

Value Type: DWORD

Value: <Controls type of access given to encrypted files by client>

This REG_DWORD registry value is used to provide input to the function.

BOOLEAN

DtIsSrvRaw(

 VOID

);

The reference implementation makes use of this in the DtSupportPrePolicy callback (in
DtSupportCommon.cpp).

FESF Custom Providers Kit Developers’ Guide

19

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters

Value Name: OnDiskyStructure

Value Type: REG_SZ

Value: <Lists processes to bypass >

This REG_SZ registry value is used to provide input to the function.

UNICODE_STRING

DtDsOds(

 VOID

) ;

This value is then passed down to the DS driver and used to select the On Disk Provider. Hence the name

here has to match the Name field in the DS_DISPATCH_TABLE structure.

7.3.3 Refreshing the Parameters
Calling the function:

NTSTATUS

DtReloadRegistry(

 VOID

)

Will cause the registry to be re-read and the parameterization to be reset.

7.4 Configuring the DS Driver
Only one small part of the DS behavior (apart from anything you may seek to add to your provider) can by

controlled by configuring the registry: That is the maximum size of the cache for any one directory. This can

be controlled by the value,

HKLM\SYSTEM\CurrentControlSet\Services\<DsDriverName>\DirCacheMaxSize

with 0 meaning “suppress the caching” and non-zero values defining the size of the cache that each cached

directory will have. “Size” means the number of corrected entries that will be stored (we do not cache the

information for unencrypted files, that is for the FSD to do). Each entry consumes about 64 bytes of paged

memory. The default value is 300.

FESF Custom Providers Kit Developers’ Guide

20

Coding and API Reference

Policy Provider Functional Reference

FESF Custom Providers Kit Developers’ Guide

21

DtInitializeDtSupport and

DtTeardownDtSupport
NTSTATUS

DtInitializeDtSupport(

 In PDRIVER_OBJECT DriverObject,

 In PUNICODE_STRING RegistryPath

);

VOID

DtTeardownDtSupport(

 VOID

);

Parameters

The parameters to DtInitializeDtSupport are those supplied during driver initialization.

Return Value

DtInitializeDtSupport returns STATUS_SUCCESS upon successful initialization of the driver.

Otherwise a failure status is returned.

DtTeardownDtSupport is a VOID function.

Remarks

These functions are called during driver initialization and driver teardown, respectively. As an aside,

developers are encouraged to frequently unload the DT during development. So long as the DT is run with

Verifier this provides an excellent test against resource leakage.

Unloading the DT will cause the rest of the FESF System (Isolate and DS) to quiesce.

FESF Custom Providers Kit Developers’ Guide

22

DtSupportAttach

NTSTATUS

DtSupportAttach(
 In PFLT_VOLUME Volume,
 In PFLT_INSTANCE Instance,
 _In_opt_ PDEVICE_OBJECT DiskDevice,
 In DEVICE_TYPE VolumeDeviceType,
 In FLT_FILESYSTEM_TYPE VolumeFilesystemType,
 In BOOLEAN IsUpperFilter,
 Out BOOLEAN *Compliance,
 Out _Notnull_ PVOID *ProviderContext

);

Parameters

• Volume and Instance are taken from the PCFLT_RELATED_OBJECTS FltObjects parameter to the

Filter Manager Instance setup call.

• DiskDevice is the disk volume for the device (obtained with a call to FltGetDiskDeviceObject).

This will be null if this is a network volume.

• VolumeDeviceType and VolumeFilesystemType are the parameters to the Filter Manager Instance

setup call.

• Compliance must be set to FALSE.

On a successful attach, *ProviderContext will be placed into vcb->ProvidersContext. This memory will

be freed via a call to DtSupportFreeProviderContext.

Return Value

STATUS_SUCCESS if the volume will contain encrypted files.

STATUS_FLT_DO_NOT_ATTACH if the volume will not contain encrypted files.

Remarks

The implementation of this function should inspect the PFLT_VOLUME provided by the parameter and

determine whether FESF will be supporting encrypted files on the volume. Support is indicated by the return

parameter.

Implementations may choose to leave the code in DtSupportCommon untouched and make use of the helper
function:

NTSTATUS
DtSupportProviderAttach (
 In PFLT_VOLUME Volume,
 In PFLT_INSTANCE Instance,
 _In_opt_ PDEVICE_OBJECT DiskDevice,
 In DEVICE_TYPE VolumeDeviceType,

FESF Custom Providers Kit Developers’ Guide

23

 In FLT_FILESYSTEM_TYPE VolumeFilesystemType,
 Out _Notnull_ PVOID *ProviderContext
);

The implementation of which is in in DtSupport.cpp.

Note

This configuration has changed significantly in this release and although the default behavior is unchanged

the degree of controllability is extended. This includes

• Registry control for attaching to “unknown” volumes

• Moving the “AttachNetwork” registry value to the “Parameters” sub key

• The addition of local override to disallow attaching to any local disks.

FESF Custom Providers Kit Developers’ Guide

24

DtSupportFreeProviderContext

VOID
DtSupportFreeProviderContext(
 _In_opt_ PVOID ProviderContext
);

Parameters

ProviderContext

Return Value

VOID function.

Remarks

This function is called to return memory passed to the Dt implementation in the DtSupportAttach function.

FESF Custom Providers Kit Developers’ Guide

25

DtSupportDetach

VOID

DtSupportDetach(

 In PCFLT_RELATED_OBJECTS FltObjects,

 In FLT_INSTANCE_TEARDOWN_FLAGS Flags,

 In _NotNull_ PVCB Vcb

);

Parameters

The first two parameters are taken from the parameters to the InstanceTeardownCompleteCallback

callback.

The third parameter is the (upper) DT’s VCB.

Return Value

VOID function.

Remarks

This function is called after Filter Manager and FESF have completed detach processing.

FESF Custom Providers Kit Developers’ Guide

26

DtSupportPrePolicy

MONADNOCK_DISPOSITION

DtSupportPrePolicy(

 In PDT_VCB Vcb,

 In PFLT_CALLBACK_DATA CallbackData,

 In PCFLT_RELATED_OBJECTS FltObjects

 Out BOOLEAN *BypassByPath

);

Parameters

Vcb

Contains per volume information (it is the Filter Manager instance context).

CallbackData

FltObjects

Come directly from the parameters passed to the Filter Manager pre-create call.

BypassByPath

Is used as a debgging aid and should be set if the returnvalue was BypassUnsafe and this was because of the

path (not, for instance because the process had been marked as bypass)

Return Value

A MONADNOCK_DISPOSITION

Remarks

This function gives the Policy Provider the option to shortcut processing by deciding early on that a

file/stream need not be processed. It is called in pre-create in the caller’s thread context. The

implementation of this function should inspect the provided parameter and return the appropriate

MONADNOCK _DISPOSITION.

The enum MONADNOCK _DISPOSITION is defined as

 enum class MONADNOCK_DISPOSITION : USHORT {

 BypassUnsafe = 54, // No caching (Isolation), no Ds
 Raw, // Cached (Isolation), NoEncryption(Dt), No Ds work.
 Normal = 57, // In: No preference (in).

FESF Custom Providers Kit Developers’ Guide

27

 // Out: Cached (Isolation), Encrypted(Dt - potential null), Ds
work.
 PerFileCorrect // Internal Disposition for Dt handling.
};

If an implementation returns anything but DispositionNormal, none of the following functions will be called.

In practice all implementation should return MONADNOCK_DISPOSITION::Normal or,

MONADNOCK_DISPOSITION::Raw; MONADNOCK_DISPOSITION::BypassUnsafe should be avoided since it

completely bypasses the caching and cache coherency provided by the rest of FESF. Further, renaming of

bypass files is very problematic.

It should be noted that the reference implementation of this is in two stages. First a call is made to

DtSupportProviderPrePolicy, and then a series of checks is made against paths which our testing has

shown to be best made bypass.

It is recommended that you preserve this format, implementing your own version of

DtSupportProviderPrePolicy only. It is likely that the paths which are known to cause issues will change with

each following release as issues are worked around and other issues discovered and keeping this separation

will allow you to leverage our testing.

It is also worthy of note that there is an implied hierarchy in deciding disposition, in that “bypass by path”

‘trumps’ other dispositions. So, for example in the reference implementation, if the test for SRV (which

usually gets RAW access) happens after the tests for “bypass by path”, this ensures that if SRV opens a file in

a bypass region it will be opened bypass.

FESF Custom Providers Kit Developers’ Guide

28

DtSupportLocalNameIsBypass

BOOLEAN

DtSupportLocalNameIsBypass(
 In _Notnull_ PDT_VCB Vcb,
 In _Notnull_ PUNICODE_STRING FileName,
 In BOOLEAN TestingRelative
);

Parameters

Vcb

Contains per volume information (it is the Filter Manager instance context).

FileName

The File Name under consideration.

TestingRelative

Used to simplify implementations of DtSupportPrePolicy. See Remarks.

In practice if true the implementation makes the same tests but against a path from which the initial

separator (“\”) has been stripped.

Return Value

True if the file name is one to be considered Bypass. False otherwise

Remarks

The reference implementation is the best documentation, but in general this function answers the question

This is the name of a file which exists or may be created on the system disk or boot volume. Should it

be made bypass?

A primary use of this function is in the implementation of DtSupportPrePolicy, where much of the “heavy

lifting” can be delegated to this function.

To this end the TestingRelative allows a low cost test of an open relative to the root directory. The reference

implementation checks relative opens by calling this function with the TestingRelative parameter of TRUE. If

it returns true it then queries the name of the relative file. If it was the root directory then the file name is

determined as being bypass.

A very important secondary use of this function is in determining whether a file which has just been opened

has been misclassified as non bypass. This is particularly useful when the path contains long file names and a

FESF Custom Providers Kit Developers’ Guide

29

file is opened via its short name. For example, if “\LongPathName” was determined as being bypass the

query on the name “\LongPa~1” would return “non bypass”. After opening, the file’s true name can be

determined, this function is called again, and FESF detects this and reacts appropriately.

An important final use of this function is in behaving appropriately when a file is renamed from a bypass to a

non-bypass region. This is nearly always a dangerous situation since it can result in cache inconsistency if file

objects are still open against the file (for instance because of sections). If FESF detects this (with the help of

this function) it will try to mitigate issues by purging caches appropriately.

NOTE

During development we rediscovered that occasionally a local file name may start with two back slashes (for

instance (\\Windows\SystemApps\Microsoft.Windows.XGpuEjectDialog_cw5n1h2txyewy\AppxManifest.xml)

and the filesystem will be expected to handle it. This is an old (25 years) and venerable bug in the Win32. In

order to not provoke a false positive of “file is now bypass”, our reference implementation explicitly looks

for, and handles, this pattern.

file://///Windows/SystemApps/Microsoft.Windows.XGpuEjectDialog_cw5n1h2txyewy/AppxManifest.xml

FESF Custom Providers Kit Developers’ Guide

30

DtSupportProbeCreate

BOOLEAN

DtSupportProbeCreate(

 In PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects,

 In PDT_VCB Vcb

);

Parameters

Data

Describes the create which is about to be performed.

FltObjects

Contains miscellaneous Filter Manager structures relating to this request

Vcb

Contains per volume information (it is the Filter Manager instance context)

Return Value

TRUE to provoke being called back at DtSupportVetoProbedCreate, FALSE otherwise

Remarks

This function works in tandem with DtSupportVetoProbedCreate to give the DT the opportunity to deny an

open on a file based on information which requires an open file object to the file before the requested

operation proceeds which operation might result in the file being destroyed, for instance by the SUPERSEDE

or DELETE_ON_CLOSE dispositions.

It is thus called during pre-create processing.

Returning TRUE from this function causes the DT to be called at DtSupportVetoProbedCreate with a usable

PFILE_OBJECT and a HANDLE.

FESF Custom Providers Kit Developers’ Guide

31

DtSupportVetoProbedCreate

NTSTATUS

DtSupportVetoProbedCreate(

 In PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects,

 In PDT_CREATE_CONTEXT Context

);

Parameters

Data

Describes the create which is about to be performed.

FltObjects

Contains miscellaneous Filter Manager structures relating to this request

Context

Contains some fields which may be useful in influencing the decision. Specifically:

Vcb

Contains per volume information (it is the filter manager instance context)

Handle

A HANDLE opened to the file (for no access and full share). The DS layer has seen this as a RAW

open.

FileObject

A pointer to a FILE_OBJECT associated with Handle

All other fields in the Context structure should not be consulted.

Return Values

If the function returns an error status then the create described by Data is failed with this status. Only an

error status or STATUS_SUCCESS can be returned.

This function is called during pre-create processing if a preceding call to DtSupportProbeCreate returned

TRUE.

If this function returns a failure status then user open request will be failed with that status before any data

has been altered.

FESF Custom Providers Kit Developers’ Guide

32

Remarks

The File Object can only be used to perform a limited set of functions.

• Because the file object is ‘raw’, no I/O will be passed to a custom DS.

• Because the file object is for a no-access open, I/O cannot be performed over the network. In this

case an open of “” relative to the handle should be performed. Such a create will be seen by the

lower layers as a Bypass (a type of raw) create. Bear in mind that this create might also provoke a

sharing violation which would otherwise not have happened unless the DesiredAccess and

ShareAccess are minimized to that in the Data parameter.

• If using the lower file object for I/O only uncached I/O can be performed., cached I/O or use of

sections (ZwCreateSection) will deadlock the system.

• Paging I/O should not be performed.

FESF Custom Providers Kit Developers’ Guide

33

DtSupportCreateStream

NTSTATUS

DtSupportCreateStream(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 In _Notnull_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PFLT_FILE_NAME_INFORMATION FileName,

 In ULONG Flags,

 In ACCESS_MASK GrantedAccess,

 In ULONG CreateAction,

 Out _Notnull_ PDT_CRYPTO_ALGORITHM *Algorithm,

 Out PVOID *KeyMaterial,

 Out ULONG *KeyMaterialSize,

 Out PVOID *DtHeader,

 Out ULONG *DtHeaderSize

);

Input Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is the Filter Manager instance context)

Scb

Contains per stream information (it is the Filter Manager stream context)

FileObject

The file object associated with the request. When this call is made FileObject represents an open

handle to the file.

FileName

The name of the file. It will have been normalized unless the normalization could not be done in

which case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set

FESF Custom Providers Kit Developers’ Guide

34

Flags

The bitwise or of three flags:

DT_NAME_NOT_NORMALIZED As noted above, the FileName parameter is usually the normalized

name. If the normalization failed then this flag is set.

DT_REQUEST_FROM_SRV This flag is set if the request originated from Srv.

HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\enableecp must be set to a

DWORD value of one (0x01). Our sample solution sets this value during installation

DT_EFS_FILE This flag is no longer set.

GrantedAccess

The access mode that has been granted to the file

CreateAction

The created disposition of the file (FILE_CREATED, FILE_OVERWRITTEN and so forth).

Output Parameters

Algorithm

A pointer to an opaque data structure which describes how the file is to be encrypted, this is

described in the reference section for PDT_CRYPTO_ALGORITHM.

KeyMaterial

KeyMaterialSize

Define a buffer which contains the key material to be used to encrypt the file.

DtHeader

DtHeaderSize

Define a buffer which is written in cleartext to the stream. The DtSupport module is expected to be

able to generate KeyMaterial from this header on subsequent calls to DtSupportLookupStream.

Return Value

DT_RAW if the file/stream is not to be encrypted.

STATUS_SUCCESS if the file/stream is to be encrypted.

FESF Custom Providers Kit Developers’ Guide

35

Any other failure status will be passed back to the application performing the Create. Note that any

operations in inherent with the open (truncation or truncation) will have been performed, despite the Create

being failed.

Remarks

This function is called in post create, when a zero length file has been encountered and for which no

registered DS implementation has recognized. The implementation of this function has to decide whether

the file is going to be encrypted (when it is first written to) and if so, what key material should be used and

what header should be stored.

If the file/stream is not to be encrypted then the function should return DT_IGNORE, otherwise it should

return STATUS_SUCCESS and suitably populate the output parameters. Other failures will be returned to the

application calling create.

Note Regarding Synchronization

The FESF system provides no guarantees that this callback may not be active for the same file or stream

across multiple threads and machines. The Data Storage layer is expected to provide the synchronization

such that the “first writer wins”. Thus, there is no guarantee that the returned header and key material will

be used, instead the header and key material from another call may be used, or if the header was written on

a remote node, the key material returned by a call to DtSupportCheckDirBehavior.

FESF Custom Providers Kit Developers’ Guide

36

DtSupportCheckAccess

NTSTATUS

DtSupportCheckAccess(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 In _Notnull_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PFLT_FILE_NAME_INFORMATION FileName,

 In ULONG Flags,

 In ACCESS_MASK GrantedAccess,

 In ULONG CreateAction,

 In PVOID DtHeader,

 In ULONG DtHeaderSize

);

Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is a Filter Manager instance context).

Scb

Contains per stream information (it is a Filter Manager stream context).

FileObject

File object associated with the request. When this call is made FileObject represents an open handle

to the file.

FileName

Name of the file. It will have been normalized unless the normalization could not be done in which

case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set.

Flags

As described for DtSupportCreateStream.

Additionally DT_DEHYDRATED is set if the file is sparse but in policy.

You should be very careful in this situation since if the Cloud provider fulfills paging reads directly

and if you gave raw acces to an encrypted file which was stored decrypted in the cloud corruption

could occur.

GrantedAccess

The access mode that has been granted to the file.

CreateAction

The created disposition of the file (FILE_CREATED, FILE_OVERWRITTEN and so forth).

FESF Custom Providers Kit Developers’ Guide

37

DtHeader

DtHeaderSize

Defines a buffer whose contents were supplied as output from a previous call to

DtSupportCreateStream

Return Value

STATUS_SUCCESS to allow access to the encrypted or decrypted data in the file.

DT_RAW to allow only unencrypted access to the file.

Any other failure status (for instance STATUS_ACCESS_DENIED) will be passed back to the application

performing the Create. Note that any operations inherent with the open (truncation or truncation) will have

been performed, despite the Create being failed.

Remarks

This function is called in post-create for encrypted files. The implementation of this function may choose to

deny access to the caller (by return STATUS_ACCESS_DENIED) or allow access to the encrypted or decrypted

data in the file (by return STATUS_SUCCESS) or to only allow unencrypted access (by returning DT_RAW).

This function may be called after a call to DtSupportCreateStream (if relevant) and will be called before a call

to DtSupportLookupStream (if relevant).

FESF Custom Providers Kit Developers’ Guide

38

DtSupportCheckDirBehavior

NTSTATUS

DtSupportCheckDirBehavior(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 In _Notnull_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PFLT_FILE_NAME_INFORMATION FileName,

 In ULONG Flags,

 In ACCESS_MASK GrantedAccess,

 In ULONG CreateAction

);

Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is a Filter Manager instance context)

Scb

Contains per directory information (it is a Filter Manager stream context)

FileObject

The file object associated with the request. When this call is made, FileObject represents an open

handle to the directory.

FileName

The name of the directory. It will have been normalized unless the normalization could not be done

in which case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set.

Flags

As described for DtSupportCreateStream.

GrantedAccess

The access mode that has been granted to the directory

CreateAction

The created disposition of the file (FILE_CREATED, FILE_OPENED and so forth).

Return Value

STATUS_SUCCESS to allow directory to be listed with corrected sizes.

DT_RAW to allow directory to be listed showing real on disk sizes.

DT_PER_FILE_CORRECT to call DtSupportPerFileCorrect for each directory listing.

FESF Custom Providers Kit Developers’ Guide

39

Any other failure status (for instance STATUS_ACCESS_DENIED) will be passed back to the application

performing the Create. Note that any operations in inherent with the open (truncation or truncation) will

have been performed, despite the Create being failed.

Remarks

This function is called in post-create for directories.

The implementation of this function may choose to deny access to the directory (by returning

STATUS_ACCESS_DENIED) or to allow the directory to be listed showing the real on disk sizes (by returning

DT_RAW). It can also arrange that all entries are unconditionally corrected (by returning STATUS_SUCCESS) or

for the function DtSupportPerFileCorrect to be called for each directory listing (by returning

DT_PER_FILE_CORRECT).

FESF Custom Providers Kit Developers’ Guide

40

DtSupportPerFileCorrect

BOOLEAN

DtSupportPerFileCorrect(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 _In_opt_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT DirectoryFileObject,

 _In_bytecount_(DirectoryBufferSize) _Notnull_ PVOID DirectoryBuffer,

 In ULONG DirectoryBufferSize,

 In FILE_INFORMATION_CLASS InfoClass,

 In KPROCESSOR_MODE RequestorMode

);

Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is the Filter Manager instance context).

Scb

Contains per stream information (it is the Filter Manager stream context).

DirectoryFileObject

The file object associated with the request.

DirectoryBuffer

DirectoryBuffersize

Describe the directory buffer under consideration. This is one of the standard directory enumeration

formats as described by InfoClass

InfoClass

The type of (directory) enumeration.

RequestorMode

The mode (kernel or user) of the directory enumeration request. This allows the buffer to be probed

correctly, which operation (and all buffer manipulation) should be done within a try/catch statement

NOTE: The DirectoryBuffer, DirectoryBufferSize, and InfoClass parameters are suitable for being passed

iteratively to FesfGetNextDirectoryEntry.

FESF Custom Providers Kit Developers’ Guide

41

Return Value

This function should return FALSE only if the output requires no further processing (either because no entry

was found to be flagged or because all flagged entries had that flag cleared).

The example code in DtSupportProvider.cpp shows how to iterate across a buffer and unconditionally require

that every entry be corrected.

Remarks

This function is called during directory enumeration for those directories where the call to

DtSupportCheckDirBehavior returned DT_PER_FILE_CORRECT.

This function is responsible for traversing the provided buffer (in a try-catch-finally statement), probably

using the FesfGetNextDirectoryEntry function and calling FesfClearForCorrection for those entries which do

not require size correction. Whether a file is a candidate for correction can be checked with the

FesfIsMarkedForCorrection function.

FESF Custom Providers Kit Developers’ Guide

42

DtSupportLookupStream

NTSTATUS

DtSupportLookupStream(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 In _Notnull_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PFLT_FILE_NAME_INFORMATION FileName,

 In ULONG Flags,

 In PVOID DtHeader,

 In ULONG DtHeaderSize,

 Out _Notnull_ PDT_CRYPTO_ALGORITHM *Algorithm,

 Out PVOID *KeyMaterial,

 Out ULONG *KeyMaterialSize

);

Input Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is the Filter Manager instance context).

Scb

Contains per stream information (it is the Filter Manager stream context).

FileObject

The file object associated with the request. When this call is made, FileObject represents an open

handle to the file.

FileName

The name of the file. It will have been normalized unless the normalization could not be done in

which case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set.

Flags

As described for DtSupportCreateStream.

DtHeader

DtHeaderSize

Defines a buffer whose contents were supplied as output from a previous call to

DtSupportCreateStream

FESF Custom Providers Kit Developers’ Guide

43

Output Parameters

Algorithm

A pointer to an opaque data structure which describes how the file is to be encrypted. This is

described more in the section about CryptoProviders.

KeyMaterial

KeyMaterialSize

Define a buffer which contains the key material to be used to encrypt the file. This is described more

in the section about CryptoProviders.

Return Value

STATUS_SUCCESS

Any failure status will be passed back to the application performing the Create. Note that any operations in

inherent with the open (truncation or truncation) will have been performed, despite the Create being failed.

Remarks

This function is called when the FESF system encounters a file/stream which has been previously converted

via (successful) call to DtSupportCreateStream. The implementation is given the header which was previously

returned and has to return the associated key material and algorithm. The MiniFilter caches the material in

the SCB and makes it available to the encryption callbacks.

FESF Custom Providers Kit Developers’ Guide

44

DtSupportRename

NTSTATUS

DtSupportRename(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 _In_opt_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In PFLT_FILE_NAME_INFORMATION FileName,

 In PFLT_FILE_NAME_INFORMATION NewFileName,

 In ULONG Flags,

 Out _Notnull_ BOOLEAN PostCall

);

Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is the Filter Manager instance context).

Scb

Contains per stream information (it is the Filter Manager stream context).

FileObject

The file object associated with the request. When this call is made, FileObject represents an open

handle to the file.

FileName

The name of the file. It will have been normalized unless the normalization could not be done in

which case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set.

NewFileName

The normalized name that will result from a successful rename.

Note that if the DT_TARGET_NAME_INVALID bit is set in Flags, only the Volume and Share fields are

valid.

Flags

As described for DtSupportCreateStream.

Additionally:

DT_TARGET_NAME_INVALID is set if Filter Manager could not determine the target. This is often

associated with a rename “through” a symbolic link to a share

DT_TARGET_BYPASS is set if the target of the rename was found (via a call to

DtSupportLocalNameIsBypass) to be bypass.

FESF Custom Providers Kit Developers’ Guide

45

DT_SOURCE_BYPASS is set if the source file was found (via a call to DtSupportLocalNameIsBypass to

be bypass.

DT_REPLACE_IF_EXISTS is set if the ReplaceIfExists was specified in the rename,

PostCall

If set to TRUE then the DtSupportPostRename API will be called after the rename has happened.

Return Value

STATUS_SUCCESS

Any failure status will be passed back to the application performing the Rename.

Remarks

This function is called in the pre- IRP_MJ_SET_INFORMATION path when any arbitrary rename is

encountered. The purpose of this call is to give the Policy Provider the opportunity to veto the rename.

FESF Custom Providers Kit Developers’ Guide

46

DtSupportPostRename

NTSTATUS

DtSupportRename(

 In NTSTATUS Status,

 In _Notnull_ PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PDT_SCB Scb,

 In FLT_POST_OPERATION_FLAGS Flags

);

Parameters

Status

The result of the operation.

FltObjects

The objects passed in to the operation by the FilterManager.

Scb

Contains per stream information (it is the Filter Manager stream context).

Flags

The flags passed in to the operation by the FilterManager.

Return Value

STATUS_SUCCESS

Any failure status will be passed back to the application performing the rename, however by the time this

function is called the file will have been renamed.

Remarks

This function is called in the post-rename path if *PostRename was set to TRUE in a call to DtSupportRename.

It is called in the same context as the pre-rename but without the “TLS” being set.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/fltkernel/nc-fltkernel-pflt_post_operation_callback
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/fltkernel/nc-fltkernel-pflt_post_operation_callback

FESF Custom Providers Kit Developers’ Guide

47

DtSupportLinkCreate
NTSTATUS

DtSupportLinkCreate(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 _In_opt_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In PFLT_FILE_NAME_INFORMATION FileName,

 In PFLT_FILE_NAME_INFORMATION LinkFileName,

 In ULONG Flags

);

Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is the Filter Manager instance context).

Scb

Contains per stream information (it is the Filter Manager stream context).

FileObject

The file object associated with the request. When this call is made, FileObject represents an open

handle to the file.

FileName

The name of the file. It will have been normalized unless the normalization could not be done in

which case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set

LinkFileName

The normalized name that will result from a successful link create

Note that if the DT_TARGET_NAME_INVALID bit is set in Flags, only the Volume and Share fields are

valid.

Flags

As described for DtSupportCreateStream.

Additionally

DT_TARGET_NAME_INVALID is set if Filter Manager could not determine the target. This is often

associated with a rename “through” a symbolic link to a share

DT_TARGET_BYPASS is set if the target of the hard link was found (via a call to

DtSupportLocalNameIsBypass) to be bypass.

DT_SOURCE_BYPASS is set if the source file was found (via a call to DtSupportLocalNameIsBypass) to

be bypass.

FESF Custom Providers Kit Developers’ Guide

48

DT_REPLACE_IF_EXISTS is set if the ReplaceIfExists was specified in the LinkCreate.

Return Value

STATUS_SUCCESS

Any failure status will be passed back to the application performing the Link Creation.

Remarks

This function is called in the pre-IRP_MJ_SET_INFORMATION path when an attempt is going to be made to

create a hard link to a file. The purpose of this call is to give the Policy Provider the opportunity to veto the

link create.

FESF Custom Providers Kit Developers’ Guide

49

DtSupportIsKeyMaterialIdentical

BOOLEAN

DtSupportIsKeyMaterialIdentical(

 In _Notnull_ PVOID Header1,

 In ULONG HeaderSize1,

 In _Notnull_ PVOID Header2,

 In ULONG HeaderSize2

);

Parameters

Header1

A pointer to the first file header to be compared

HeaderSize1

The size of the first file header

Header2

A pointer to the second file header to be compared

HeaderSize2

The size of the second file header

Return Value

TRUE if the key material has not changed

FALSE if the key material has changed

Remarks

This function is called to determine whether the key material for the file has changed. It is called when FESF

has detected that the file’s header is different. If the function returns TRUE then the key material has not

changed, and FESF does not perform any more processing. If the function returns FALSE, then the key

material has changed and FESF will make further calls to the Dt to allow it to handle the key change.

Changing the key material without first truncating the file should be done with extreme caution because it

FESF Custom Providers Kit Developers’ Guide

50

opens the possibility for file corruption as partial sections of the file get encrypted with either the ‘old’ or the

‘new’ key.

FESF Custom Providers Kit Developers’ Guide

51

DtSupportCorruptFile

NTSTATUS

DtSupportCorruptFile(

 In _Notnull_ PDT_VCB Vcb,

 In PFLT_FILE_NAME_INFORMATION FileName

);

Parameters

Vcb

Contains per volume information (it is the Filter Manager instance context).

FileName

Gives details about the failing file.

Return Value

DT_RAW to give the application unencrypted access to the file

Failure status

Remarks

This function is called when an On Disk Provider returns the distinguished error DT_CORRUPT. This API MUST

return either a failure status (which will be reflected to the calling application) or DT_RAW in which case the

application will get unencrypted access to the file.

FESF Custom Providers Kit Developers’ Guide

52

DtSupportTransactedOpen

NTSTATUS

DtSupportTransactedOpen(

 In _Notnull_ PETHREAD Thread,

 In _Notnull_ PDT_VCB Vcb,

 In _Notnull_ PDT_SCB Scb,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PKTRANSACTION Transaction,

 In _Notnull_ PFLT_FILE_NAME_INFORMATION FileName,

 In ULONG Flags,

 In ACCESS_MASK GrantedAccess,

 In ULONG CreateAction

);

Parameters

Thread

The pointer to the current thread.

Vcb

Contains per volume information (it is the Filter Manager instance context).

Scb

Contains per stream information (it is the Filter Manager stream context).

FileObject

The file object associated with the request. When this call is made, FileObject represents an open

handle to the file.

Transaction

Describes transaction under which this create has happened.

FileName

The name of the file. It will have been normalized unless the normalization could not be done in

which case the Flags parameter will have the DT_NAME_NOT_NORMALIZED bit set. You should be

aware that this is the name of the file within this transaction.

Flags

As described for DtSupportCreateStream.

GrantedAccess

The access mode that has been granted to the file.

CreateAction

The created disposition of the file (FILE_CREATED, FILE_OVERWRITTEN and so forth).

FESF Custom Providers Kit Developers’ Guide

53

Return Value

STATUS_SUCCESS to allow vetoing of transacted opens

Failure status

Remarks

All transactional created files are ignored by the FESF subsystem (by marking them bypass), and this is

applied retroactively (all existing handles to the same file are marked as bypass). This is the technology that

we have discovered as being required to allow Windows Update to work.

Since this gives an unprivileged user a simple way to gain raw access to a file, this call exists to allow you to

veto transacted opens, it is called during post create processing.

You should be aware that vetoing transactions is liable to make Windows Update fail.

This function is called after the Create has been sent to the FSD. In our experience this can be quite limiting.

DtSupportPrePolicy provides a mechanism to influence transacted opens prior to the create.

FESF Custom Providers Kit Developers’ Guide

54

DtSupportFsCtl

PFLT_PREOP_CALLBACK_STATUS

DtSupportFsCtl(

 In PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects

);

Parameters

Data

FltObjects

The standard parameters supplied to Filter Manager precalls.

Return Values

This function must return one of:

• FLT_PREOP_SUCCESS_NO_CALLBACK: to indicate that the FsCtl has not been recognized.

• FLT_PREOP_COMPLETE: to indicate that it has recognized and processed the request and set up the

Io Status Block in the PFLT_CALLBACK_DATA

• FLT_PREOP_PENDING : to indicate that it has posted the request and will complete it (using

FltCompletePendedPreOperation) at a later stage

Remarks

This callback is called in the pre-call processing to allow the Provider to intercept file system controls targeted

at it.

FESF Custom Providers Kit Developers’ Guide

55

DtSupportGetEventLogDevice

PDEVICE_OBJECT

DtSupportGetEventLogDevice(

 VOID

);

Parameters

None

Return Values

Non null value indicates driver will log errors to this device.

Remarks

If this returns a non null value, then the driver will log errors to this device using IoWriteErrorLogEntry.

FESF Custom Providers Kit Developers’ Guide

56

DtSupportDestroyKeyMaterial

VOID

DtSupportDestroyKeyMaterial(

 In PVOID KeyMaterial,

 In ULONG KeyMaterialSize

);

Parameters

KeyMaterial

KeyMaterialSize

The key material to be destroyed.

Return Values

Void function

Remarks

This function is called to destroy key material returned by DtSupportLookupStream or

DtSupportCreateStream. The DT may choose to scrub the memory before freeing it.

FESF Custom Providers Kit Developers’ Guide

57

DtSupportFreeHeader

VOID

DtSupportFreeHeader(

 In PVOID Header,

 In ULONG HeaderSize

);

Parameters

Header

HeaderSize

The header to be freed.

Return Values

Void function

Remarks

This function is called to free up the Header returned by DtSupportCreateStream (and subsequently stored

on disk). Since this material is not sensitive, the DT need not scrub the memory before freeing it.

FESF Custom Providers Kit Developers’ Guide

58

DtSupportGetCompressionBehavior

FESF_COMPRESSION_BEHAVIOR

DtSupportGetCompressionBehavior(

 In PFLT_CALLBACK_DATA CallbackData,

 In PDT_CREATE_CONTEXT Context

);

Parameters

CallbackData

Comes directly from the parameters passed to the Filter Manager pre-create call.

Context

Contains some fields which may be useful in influencing the decision, notably the VCB for the device

in question

Return Values

See below for more details.

• FESF_COMPRESSION_BEHAVIOR::Decompress

• FESF_COMPRESSION_BEHAVIOR::Shadow

• FESF_COMPRESSION_BEHAVIOR::Isolate

Remarks

This function allows the Dt to define how FESF will handle any compressed files it encounters.

By default when FESF encounters encrypted files it decompresses them prior to operation. This allows FESF

to handle these files. This is the default behavior, because compressing files that are encrypted is unlikely to

save a significant amount of space. In addition, FESF will arrange for files that are created in folders marked

for compression to automatically not be compressed.

This function, which is called before the file is opened or created, allows FESF’s default behavior to be

modified to:

Decompress (current default behavior)

Mark the file as a “special bypass” (Shadow). This behavior has little purpose outside test environments but

is the behavior when decompression fails (for instance on a read-only file).

Ignore the compressed attribute (Isolate)

This only has any purpose on the network in which case the bit it purely advisory (since the

decompressionhappens on the server) but may be used to cut down the overhead of performing the remote

decompression operation.

FESF Custom Providers Kit Developers’ Guide

59

Extreme caution should be used when changing FESF’s behavior from the default. Specifically, OSR only

supports returning FESF_COMPRESSION_BEHAVIOR::Isolate for network files. Returning any other values for

any other situation will not be supported by OSR.

FESF Custom Providers Kit Developers’ Guide

60

FSCTL_FESF_

TEARDOWN_KEYMATERIAL

This file system control instructs FESF to remove any cached key material. This will usually be performed

after changing the Data Encryption Key (which is not recommended behavior because of the possibilities of

corruption it engenders). For as long as the file has no key material associated with it, all reads and writes to

the file will be failed with STATUS_DEVICE_OFFLINE. Key material will be associated with the file the next

time that it is opened,

This is available to all modes as a priviledged (with SeRestorePrivilege) File System Control.

It is available to kernel mode only as an Internal Ioctl (IRP_MJ_INTERNAL_IOCTL). No privilege checking is

performed in this case.

FESF Custom Providers Kit Developers’ Guide

61

Encryption Provider Functional Reference

FESF Custom Providers Kit Developers’ Guide

62

PDT_CRYPTO_ALGORITHM
This structure refers to a particular encryption algorithm (“AES-128 with CBC”, or “Elliptic curve using

a NIST/X9.62/SECG curve over a 192 bit prime field” and so forth).

This structure may be allocated from paged pool. It can be created in any way that an

implementation wants. An example is given in DtCryptoLookupAlgorithm.

FESF Custom Providers Kit Developers’ Guide

63

PDT_CRYPTO_KEY
This structure refers to a particular instance of an algorithm, differentiated by the key material

supplied.

It should be allocated from non paged pool. It is reference counted; when first returned (by

DtCryptoCreateKey) a reference of 1 is assumed. When the count goes down to 0 the structure can

be freed.

The calling system does not guarantee that two increments will not happen at once, nor will it

guarantee that two decrements happen at once and so interlocked instructions should be used to

maintain the reference count. It will however guarantee than no increment will happen while the

reference count is dropping from 1 to 0, and that once the reference count has dropped to zero it

will never be incremented.

The key contains sensitive information and it is usual to scrube the buffer prior to being freed. Since

the buffer is allocated from non paged pool it will never be written to the paging file.

FESF Custom Providers Kit Developers’ Guide

64

DtCryptoInit and DtCryptoTeardown

NTSTATUS

DtCryptoInit(

 In PUNICODE_STRING RegistryPath

);

VOID

DtCryptoTeardown(

 VOID

);

These functions are called at driver initialization and unload respectively.

FESF Custom Providers Kit Developers’ Guide

65

DtCryptoSecondaryInitialize and

DtCryptoIsSecondaryInitialized

NTSTATUS

DtCryptoSecondaryInitialize(

 VOID

);

BOOLEAN

DtCryptoIsSecondaryInitialized(

 VOID

);

DtCryptoSecondaryInitialize allows deferred initialization. There are some CNG operations which

cannot take place during driver initialization. DtCryptoSecondaryInitialize is called during create

processing so long as DtCryptoIsSecondaryInitialized has returned FALSE.

The reference implementation uses this callback to initialize the ESSIV generation.

FESF Custom Providers Kit Developers’ Guide

66

DtCryptoLookupAlgorithm

NTSTATUS

DtCryptoLookupAlgorithm(

 In PUNICODE_STRING Name,

 Out PDT_CRYPTO_ALGORITHM *Algorithm

);

This is a helper function in the Encryption Provider reference Implementation which demonstrates

how to create a CNG BCRYPT_ALG_HANDLE from an arbitrary registry setting.

FESF Custom Providers Kit Developers’ Guide

67

DtCryptoCreateKey

NTSTATUS

DtCryptoCreateKey(

 In PDT_CRYPTO_ALGORITHM Algorithm,

 In PVOID KeyMaterial,

 In ULONG KeyMaterialSize,

 Out PDT_CRYPTO_KEY *Key

);

Input Parameters

Algorithm

Some data structure which has been separately generated.

KeyMaterial

KeyMaterialSize

The raw key material to be used when encrypting and decrypting.

Output Parameters

Key

An opaque, referenced data structure that can be passed to DtCryptoCodeMdl.

Return Values

Remarks

Given the algorithm and some key material, create something which can be passed to later calls to

DtCryptoCodeMdl.

FESF Custom Providers Kit Developers’ Guide

68

DtCryptoRefKey

VOID

DtCryptoRefKey(

 In PDT_CRYPTO_KEY Key

);

This function increments the reference count on the supplied key.

FESF Custom Providers Kit Developers’ Guide

69

DtCryptoDerefKey

VOID

DtCryptoDerefKey(

 In _CRYPTO_KEY Key

);

This function decrements the reference count on the supplied key. When the reference count drops

to zero the structure can be deallocated.

FESF Custom Providers Kit Developers’ Guide

70

DtCryptoCodeMdl

NTSTATUS

DtCryptoCodeMdl(

 In PDT_SCB Scb,

 In PMDL InMdl,

 In PMDL OutMdl,

 In ULONG Size,

 In LARGE_INTEGER StartOffset,

 In BOOLEAN Encrypt,

 In PUCHAR WorkSpace

);

Parameters

Scb

The DT Stream Context. Several fields are of interest to code implementing encryption.

Scb->CryptoKey

Refers to the CryptoKey returned by DtCryptoCreateKey.

InMdl

MDL defining the input Buffer (plaintext when Encrypt is TRUE).

OutMdl

MDL defining the output Buffer (plaintext when Encrypt is FALSE).

Size

The number of bytes to be encoded and taken from the InMDL (Encryption) or placed into

the OutMDL (decryption).

StartOffset

The offset of the read or write, and can be used as an IV.

Encrypt

Controls whether the operation is encryption (TRUE) or decryption(FALSE).

WorkSpace

A buffer of size FESF_MIN_BLOCK_SIZE provided as workspace to allow the encryption and

decryption to deal with issues to do with unaligned buffers and writes. See below.

FESF Custom Providers Kit Developers’ Guide

71

Remarks

All Encryption and Decryption is performed via calls to this function.

In most cases encryption and decryption will be in done in the paging path and the size will be

multiples of 4K. In some circumstances (for instances files small enough to fit into the MFT or non

buffered I/O) size will not be aligned. In this case, the DT has to over encrypt or under decrypt in

order to respect the block size of the particular algorithm.

In the Encryption path, the OutMDL will be large enough to contain data up to next

FESF_MIN_BLOCK_SIZE boundary. If the size is unaligned, the encryption is expected to copy the last

part of the buffer into WorkSpace, zero pad it and then encrypt the whole into the appropriate part

of the OutMDL .

In the Decryption path, the InMDL will be large enough to contain data up to next

FESF_MIN_BLOCK_SIZE boundary. If the size is unaligned, the encryption is expected to decrypt the

last part of the buffer into WorkSpace, and then copy the unaligned part into the appropriate part of

the OutMDL.

The On Disk Provider is aware of the encryption size and will store enough of the buffer beyond Size

to allow the encryption to work – it explicitly allocated and stores enough bytes to round up to the

size defined by DtCryptoBlockSize. For example, if an encrypt of 20 bytes comes in, OutMDL will

have enough space to contain FESF_MIN_BLOCK_SIZE bytes. The encryption copies 20 bytes to the

workspace, zeros the rest of the buffer and encrypts FESF_MIN_BLOCK_SIZE bytes appropriately into

OutMDL. DS will store enough of the buffer to ensure that the subsequent decryption works.

On decrypt, InMDL has enough space to contain FESF_MIN_BLOCK_SIZE bytes. The decryption

decrypts FESF_MIN_BLOCK_SIZE bytes to the workspace and then copies 20 bytes into OutMDL.

FESF Custom Providers Kit Developers’ Guide

72

DtCryptoBlockSize

ULONG

DtCryptoBlockSize(

 In PDT_CRYPTO_ALGORITHM Algorithm

);

Parameters

Algorithm

Return Values

The natural block size for the algorithm. This value should be a power of 2 and less than

FESF_MIN_BLOCK_SIZE.

Remarks

This function returns the natural block size for the algorithm in question. It is used to instruct the On

Disk Provider to over-allocate space for files to allow for up to that number of bytes.

The returned size should be a power of 2 and less than FESF_MIN_BLOCK_SIZE which is upper bound

on block size.

For example an AES-256 implementation requires that the input data be encrypted in 256bit (==8

bytes) blocks, and so to encrypt a 15 byte file would require a 16 byte input and output. In this case

the BlockSize is 8.

FESF Custom Providers Kit Developers’ Guide

73

On Disk Provider Functional Reference
In the sections that follow, a typical declaration is given, rather than the typedef line which defines the types

in the Registration Data Structure .

FESF Custom Providers Kit Developers’ Guide

74

SetupDs

NTSTATUS

SetupDs(

 In _Notnull_ PDRIVER_OBJECT DriverObject,

 In _Notnull_ PUNICODE_STRING RegistryPath

);

This function is used to initialize the On Disk Provider execution. It is used to allocate any global

resources that might be used by the On Disk Provider component. It is called during initialization.

The parameters are those supplied to DriverEntry.

FESF Custom Providers Kit Developers’ Guide

75

TeardownDs

VOID

TeardownDs(

 VOID

);

This function is used to terminate the DS execution. It is used to free resources that might have been

allocated by the On Disk Provider.

FESF Custom Providers Kit Developers’ Guide

76

SetupVolume

NTSTATUS

SetupVolume(

 In PCFLT_RELATED_OBJECTS FltObjects,

 In FLT_FILESYSTEM_TYPE VolumeFilesystemType,

 In BOOLEAN IsNetwork,

 Inout PVOID* VolumeContext

);

Input Parameters

FltObjects

VolumeFileSystemType

As supplied to Instance Setup (PFLT_INSTANCE_SETUP_CALLBACK) in Filter Manager.

IsNetwork

Defines whether the volume is a network device or a local volume.

Output Parameter

VolumeContext

A totally opaque object which will then be passed (as the “VolumeContext” parameter) to

other callbacks.

Remarks

The purpose of this function is to permit establishing a per-volume context structure for use by the

On Disk Provider. This value is passed into subsequent calls to indicate per-volume context.

Examples of per-volume context would include:

• Type of file system and/or characteristics

• Cluster (allocation unit) size of file system

• Sector (atomic I/O unit) size of file system

FESF Custom Providers Kit Developers’ Guide

77

TeardownVolumeObject

VOID

TeardownVolumeObject(

 In PVOID Object

);

This frees up any resources, and deallocates the context returned by SetupVolume.

FESF Custom Providers Kit Developers’ Guide

78

DetectState

NTSTATUS

DetectState (

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,
 In BOOLEAN NoPagingIO,

 Inout BOOLEAN *Converted,

 Post _When_(*Converted, _Out_) PVOID *DtHeader,

 Post _When_(*Converted, _Out_) ULONG *DtHeaderLength,

 Post _When_(*Converted, _Out_) PVOID *StreamContext

);

Input Parameters

FltObjects

Passed from Filter Manager, notably giving access to the file object a Filter Manager instance.

VolumeContext

 The context previously returned SetupVolume

NoPagingIo

Indicates that FESF will never send Paging IO to this file. By extension, the provider should

never issue non paging IO. The file will have been opened for caching so unaligned writes

are possible.

Output Parameters

These are described below

Returns Values

STATUS_SUCCESS

The file was successfully processed (regardless of whether it was recognized or not).

DT_CORRUPT

The on disk structure was partially recognized but the file could not be processed correctly.

Remarks

This function is called within the context of a (post) IRP_MJ_CREATE operation.

FESF Custom Providers Kit Developers’ Guide

79

This function is called when a file or stream is encountered for the first time; subsequent calls are

avoided by caching the result in a stream context. The Provider should inspect the file to see whether

it understands the on disk structure and if it does, set *Converted to TRUE, and return the header

which was stored with the file when it was converted (see the next section).

If this function does not detect any evidence that it has handled the file it should set *Converted to

FALSE and not set the *DtHeader or *DtHeaderLength.

As indicated above, once an On Disk Provider has recognized the file, or stream (by returning

*Converted == TRUE) all further activity for this file or stream will be sent to this implementation

only.

The *StreamContext which is returned from this function is passed in all these cases, and so can be

used to store any per stream data required.

This function has to ensure that it serializes properly. The rest of the FESF system provides no

guarantees that this function (or convert below) is not being called for this file/stream in other

threads, either on this host or via a networked connection.

If, during its operation, the implementation detects that the file or stream has been partially

converted or is in some way inconsistent, it can either fix up the data in situ, or, if this is impossible,

returns the distinguished error status DT_CORRUPT.

FESF Custom Providers Kit Developers’ Guide

80

TeardownStreamObject

VOID

TeardownStreamObject(

 In PVOID Object

);

This frees up any resources, and deallocates the context returned by DetectState/Convert.

FESF Custom Providers Kit Developers’ Guide

81

RecoverFile

NTSTATUS

RecoverFile(

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 In PVOID StreamContext

);

Parameters

FltObjects

This is the information passed in by Filter Manager. The Filter Manager Instance and

FileObject are the most useful fields.

VolumeContext

As returned from SetupVolume

StreamContext

As returned fromDetectState or Convert.

Return Values

STATUS_SUCCESS or a failure status as appropriate.

Remarks

This would usually be called by On Disk Provider itself in the context of another call to recover state

after call to MarkInvalid. The DS Filter calls it only when it needs to know whether a file encrypted

The On Disk Provider should check that the file is in a format it understands, rebuilding any in-

memory state from on disk contents, and return STATUS_SUCCESS or a failure status appropriately.

FESF Custom Providers Kit Developers’ Guide

82

GetHeaders
NTSTATUS

GetHeaders(

 In PFLT_INSTANCE Instance,

 _In_opt_ PVOID VolumeContext,

 In PFILE_OBJECT FileObject,

 In PVOID StreamContext,

 Inout PVOID* DtHeader,

 Inout ULONG* DtHeaderSize

);

Input Parameters

Instance

FileObject

The as passed from the Filter Manager and can be used to perform operations on the file.

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

Output Parameters

DtHeader

DtHeaderSize

As described below.

Return Values

STATUS_SUCCESS should always be returned

Remarks

This function is called within the context of an IRP_MJ_INTERNAL_DEVICE_CONTROL (itself called in

post create for the DT) and as a result of the FSCTL_MONADNOCK_DS_READ_DT_HEADER_UNSAFE

(potentially called from user mode)

FESF Custom Providers Kit Developers’ Guide

83

This function is initially invoked by the DT driver component in order to retrieve the DT header

contents for the specific file from the DS layer. If the file has no DT Header, this function should

return a null pointer and zero length. Otherwise, it allocates a buffer large enough to contain the

current DT header and returns a pointer to that buffer as well as the size of that buffer to the caller.

Note that the caller takes responsibility for freeing this buffer by using ExFreePool or

ExFreePoolWithTag. The buffer should be allocated with the tag defined by the manifest constant

TAG_DT_KEY.

All failure statuses will be reflected up to the calling function, hence this function should return

STATUS_SUCCESS even if there is no DT header.

FESF Custom Providers Kit Developers’ Guide

84

WriteHeader
NTSTATUS

WriteHeader(

 In PFLT_INSTANCE Instance,

 _In_opt_ PVOID VolumeContext,

 In PFILE_OBJECT FileObject,

 In PVOID StreamContext,

 In PVOID OldDtHeader,

 In PVOID NewDtHeader,

 In ULONG DtHeaderSize

);

Input Parameters

Instance

FileObject

The as passed from the Filter Manager and can be used to perform operations on the file.

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

OldDtHeader

NewDtHeader

DtHeaderSize

As described below.

Remarks

This optional function is called in response to an

FSCTL_MONADNOCK_DS_WRITE_DT_HEADER_UNSAFE Fsctl.

The On Disk Provider should

1. Stabilize its view of the header

2. Check that the length of the header matches the provided length

3. Check that the current header is that provided

4. And everything macthes atomically replace the header with the provided on.

FESF Custom Providers Kit Developers’ Guide

85

It is expected that changing the header in this way will not affect the encryption operations, and no

checking to that end is performed. An example of calling this might be when there is a need to

change the header (for instance the encrypted key material) on a file which is usually open for the

length of the system.

The reference implementation gives an example of its implementation.

FESF Custom Providers Kit Developers’ Guide

86

Convert and ConvertExisting

NTSTATUS

Convert(

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 _In_opt_ PVOID DtHeader,

 In ULONG DtHeaderLength,

 In ULONG CipherBlockSize,
 In BOOLEAN NoPagingIO,

 Out PVOID *StreamContext

);

NTSTATUS

ConvertExisting (

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 In PVOID StreamContext,

 _In_opt_ PVOID DtHeader,

 In ULONG DtHeaderLength,
 In BOOLEAN NoPagingIO,

 In ULONG CipherBlockSize

);

Parameters

FltObjects

As passed from Filter Manager, notably giving access to the File Object and Filter Manager

Instance.

VolumeContext

As returned from SetupVolume

StreamContext (input or output)

As returned from DetectState

DtHeader

DtHeaderLength

Describe a header which needs to be persisted and returned from calls to DetectState or

GetHeaders

FESF Custom Providers Kit Developers’ Guide

87

NoPagingIo

Indicates that FESF will never send Paging IO to this file. By extension, the provider should

never issue non paging IO. The file will have been opened for caching so unaligned writes

are possible.

CipherBlockSize

As described above.

Return Values

Any SUCCESS or FAILURE status, or the special status STATUS_ENCOUNTERED_WRITE_IN_PROGRESS.

Remarks

These functions are called within the context of a (post) IRP_MJ_CREATE operation.

They are called to convert the file into a format which may be recognized by later calls to

DetectState. The provider header has to be stored in a way which will allow subsequent calls to

DetectState to return it. Convert is called if the file has not been previously detected as having been

formatted.

ConvertExisting is called if a file has previously been detected as formatted and the formatting has

since been lost (usually because of a destructive create).

If required (because of write sharing), a successful call to these functions may be followed by a call to

DetectState (or ReadHeaders) at which point the definitive state of the file will be established.

CipherBlockSize is the size at which blocks are being encrypted. Reads and writes are required to

over-read or over-write a block to that boundary, so as to allow decryption. For instance, if the

CipherBlockSize is 16, then a write of 20 bytes should be rounded out to 32 bytes, and read of 20

bytes should be rounded to 32 bytes. In both cases the length returned should be 20 bytes, but the

calling code ensures that the buffers are large enough for these over reads and writes. The DS

implementation is responsible for maintaining the CipherBlockSize once a file has been converted,

either by saving the value or by only supporting one cipher block size. CipherBlockSize is

guaranteed to be a power of two.

See the sections describing DtCryptoCodeMdl and DtCryptoBlockSize.

The implementation should protect itself against concurrent conversions. If it discovers that a

parallel thread (on this or another system) has converted the file it should return the distinguished

status STATUS_ENCOUNTERED_WRITE_IN_PROGRESS. This instructs the rest of the system to treat

the file as already converted (and reread the header before returning it to the Crypto and policy

provider)

FESF Custom Providers Kit Developers’ Guide

88

GetAttributes
VOID

GetAttributes(

 _In_opt_ PVOID VolumeContext,

 _In_opt_ PFILE_OBJECT FileObject,

 In BOOLEAN PagingIo,

 In PVOID StreamContext,

 Inout PDS_ATTRIBUTES Attributes

);

Parameters

VolumeContext

As returned from SetupVolume

FileObject

The as passed from the Filter Manager and can be used to perform operations on the file.

PagingIO

 If this request is provoked by Paging IO then this will be TRUE. All reads to the file should be

marked IO_PAGING.

StreamContext

As returned from DetectState

Attributes

Attributes about the file in question

Remarks

This function is used to get attributes about the file in question. Often, but not always, it is in

response to IRP_QUERY_INFORMATION or a IRP_QUERY_DIRECTORY_INFORMATION.

The PDS_ATTRIBUTES structure contains three lengths (AllocationSize, EndOfFile, ValidDataLength)

which should all be returned.

The ValidDataLength is the “high water mark” that data has been written to disk, it can often be

derived from the FSD’s ValidDataLength. Unfortunately there is no supported way of getting this

value but usually inspecting the FSD’s Advanced FsRtl Header will provide an appropriate value.

FESF Custom Providers Kit Developers’ Guide

89

Finally, the PDS_ATTRIBUTES also contains a “UserDataOffset”. If the user data is going to be written

at a different offset from the one that the user sees, then this should be the offset that will be

applied. DS uses this to ensure that the FSD acquires the correct parameters when called at many of

the places where it needs an offset (for instance acquire for Modified or Mapped page write, set

sparse and so forth).

FESF Custom Providers Kit Developers’ Guide

90

IsPotentiallyEncrypted

BOOLEAN

IsPotentiallyEncrypted (
 In _Notnull_ _ const PVOID VolumeContext,

 In _Notnull_ const PLARGE_INTEGER Length,
 _In_opt_ const PFLT_FILE_NAME_INFORMATION DirInfo,
 _In_opt_ const PUNICODE_STRING FileName

);

Parameters

VolumeContext

As returned from SetupVolume

Length

The Length of the file

DirInfo

The file name information for the directory. This is only available during directory

enumeration (when we need to decide for each directory entry whether the file sizes requires

adjustment.

FileName

The file name in question. Just as for DirInfo this is avaialable only in the directory

enumeration case.

Return Values

TRUE if file is possibly encrypted

FALSE if file cannot possibly be encrypted

Remarks

There are several cases during create and directory size correction when significant processing can

be avoided if we know a priori that the file under question cannot be encrypted – either because its

length is unreasonable, or it is too small, or the name means that the file will never be encrypted

This required entry point allows an on disk implementation to instruct the DS infrastructure to avoid

these expensive operations. If a specific On Disk Structure implementation cannot make the call it

should always return TRUE.

FESF Custom Providers Kit Developers’ Guide

91

Returning TRUE will always result in a call to one of the file recognition calls (DetectState or

RecoverFile)

FESF Custom Providers Kit Developers’ Guide

92

PreReadWrite, PreSetInfo

FLT_PREOP_CALLBACK_STATUS

PreReadWrite(

 Inout PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 In PVOID StreamContext

);

FLT_PREOP_CALLBACK_STATUS

PreSetInfo(

 Inout PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 In PVOID StreamContext

);

Parameters

Data

FltObjects

As provided by Filter Manager.

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

Remarks

These functions are called in the relevant Filter Manager callback as soon as the designated

component has been located. Just as in the Filter Manager case, the returned value affects

continued processing of the operation and whether the DS_POST_CALL will be made.

Notes on Cipher Blocksize

You need to be aware that the sizes involved for reads and writes and setting of length are those

required by the application. However the Encryption Provider implementation will often require that

FESF Custom Providers Kit Developers’ Guide

93

more data be stored in order that the user data be correctly decrypted. The rounding is that

specified as CipherBlockSize in the call to Convert.

If a read or write size is not aligned on a cipher block boundary, the provided buffer will be large

enough for the data up to the cipher blocked rounded boundary.

So if a read is for 100 bytes, but the Cipher Block size was specified as being 16, then the actual

amount of data read should be 112 bytes.

FESF Custom Providers Kit Developers’ Guide

94

ExtendFile
NTSTATUS
ExtendFile(
 _In_opt_PVOID VolumeContext,
 _In_PVOID StreamContext,
 _In_opt_PFILE_OBJECT FileObject,
 In_PFILE_END_OF_FILE_INFORMATION Eof
);

Parameters

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

FileObject

The PFILE_OBJECT associated with the request

Eof

The end of file to be set. See the remarks section

Remarks

This function is called in the extending write path to move the EOF of the file outwards. This

function is optional and if it is not implemented the Ds will be called at PreSetInfo.

Implementations of this function should extend the End of file appropriately. If the eof is already

greater than (or equal to) the provided Eof this function should immediately return success.

This implementation is an optimization. It is particularly useful in the case in which multiple,

asynchronous extending writes are sent to FESF. Under certain circumstances these writes could

become unordered resulting in apparent truncates being seen at the Ds level.

FESF Custom Providers Kit Developers’ Guide

95

PostReadWrite, PostSetInfo
FLT_POSTOP_CALLBACK_STATUS

PostReadWrite(

 Inout PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 In PVOID StreamContext

);

FLT_POSTOP_CALLBACK_STATUS

PostSetInfo(

 Inout PFLT_CALLBACK_DATA Data,

 In PCFLT_RELATED_OBJECTS FltObjects,

 _In_opt_ PVOID VolumeContext,

 In PVOID StreamContext

);

Parameters

Data

FltObjects

As provided by Filter Manager.

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

Remarks

This function is called in the relevant Filter Manager callback.

FESF Custom Providers Kit Developers’ Guide

96

IsValid
BOOLEAN

IsValid(

 In PVOID StreamContext

)

Parameters

StreamContext

Return Values

TRUE if file is valid

FALSE if file is not valid

Remarks

Do we currently believe this file to be valid?

FESF Custom Providers Kit Developers’ Guide

97

MarkInvalid
VOID

MarkInvalid(

 In _Notnull_ PVOID VolumeContext,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PVOID StreamContext

);

Parameters

VolumeContext

FileObject

StreamContext

Return Values

VOID function

Remarks

Something has happened to mark the file invalid.

FESF Custom Providers Kit Developers’ Guide

98

LastWriteableCleanup
VOID

LastWriteableCleanup (

In PCFLT_RELATED_OBJECTS FltObjects,

In BOOLEAN PagingCleanup,

In PVOID VolumeContext,

 In PVOID StreamContext);

Parameters

FltObjects

As provided by Filter Manager.

PagingCleanup

There are some occasions when Cleanyp happens in the Paging IO path (where this is

determined by upper layers). In this case this parameter is set to TRUE

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

Return Values

VOID function

Remarks

This is called in pre-cleanup when the number of (non raw) open handles opened for write on the file

has gone to zero. Typically an On Disk Provider might use this to make sure that the file is written to

EOF (thus avoiding re-entrant writes).

NOTE for certain file system which check VDL against EOF in every cleanup path (an example at time

of writing is ExFat) this may be called for all closes of (non raw) handles opened for Write.

FESF Custom Providers Kit Developers’ Guide

99

LastWriteableClose
VOID

LastWriteableClose (

 In PCFLT_RELATED_OBJECTS FltObjects,

 In PVOID VolumeContext,

 In PVOID StreamContext

);

Parameters

FltObjects

As provided by Filter Manager.

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

Return Values

VOID function

Remarks

This is called in pre-close when the number of (non raw) file objects opened for write on the file has

gone to zero. Typically an On Disk Provider might use this to quiesce the on disk structure, for

instance to write checkpoint clean records.

FESF Custom Providers Kit Developers’ Guide

100

RegisterOpen
VOID

RegisterOpen(_In_ PVOID VolumeContext,

 In PVOID StreamContext,

 In _Notnull_ PFILE_OBJECT FileObject,

 In _Notnull_ PDS_REGISTER_OPEN_COUNTS Counts

);

typedef struct _DS_REGISTER_OPEN_COUNTS {

 LONG OpenHandleCount;

 LONG OpenFileObjectCount;

 LONG OpenWriteableHandleCount;

 LONG OpenWriteableFileObjectCount;

} DS_REGISTER_OPEN_COUNTS, *PDS_REGISTER_OPEN_COUNTS;

Parameters

VolumeContext

As returned from SetupVolume

StreamContext

As returned from DetectState or Convert

FileObject

As provided by Filter Manager.

Counts

The instantaneous count of different classes of open. See remarks.

Return Values

VOID function

Remarks

This is called when the Dt has made the final determination as to the state of this open and

determined that the application will have decrypted access to the data.

The count parameter provides the instantaneous values for the types of open.

• OpenHandleCount reflects the number of IRP_MJ_CREATE operations that have been

received without a matching IRP_MJ_CLEANUP

FESF Custom Providers Kit Developers’ Guide

101

• OpenFileObjectCount reflects the number of IRP_MJ_CREATE operations that have been

received without a matching IRP_MJ_CLOSE

• OpenWriteableHandleCount and OpenWriteableFileObjectCount, are similar but are further

contrained as being for file objects where WriteAccess was provided.

It is vital to realize that these numbers may not be valid (since another handle or opened might have

been closed between the capture of the values and the call to this function), further that the values

are not caputred atomically (hence it is perfectly feasible that OpenWriteableHandleCount be larger

than either OpenHandleCount or even OpenWriteableFileObjectCount

FESF Custom Providers Kit Developers’ Guide

102

FESF Custom Providers Kit Developers’ Guide

103

On Disk Support Functional Reference

Directory Correction Support

Header: FESFDirCorrection.h

Lib: Misc.lib

FESF Custom Providers Kit Developers’ Guide

104

FesfGetNextDirectoryEntry

PVOID

FesfGetNextDirectoryEntry(

 In PVOID Buffer,

 In FILE_INFORMATION_CLASS InfoClass,

 Inout PULONG SizeLeft,

 _Inout_bytecount_(sizeof(FESF_DIRECTORY_ENTRY)) PFESF_DIRECTORY_ENTRY

Addresses);

Parameters

Buffer

The current buffer pointer. Initially it should be populated with the Buffer pointer provided

to DtSupportPerFileCorrect. On subsequent calls it should be the value returned from the

previous call.

InfoClass

As pointer provided to DtSupportPerFileCorrect

SizeLeft

A pointer to a ULONG initially populated with the size of the buffer provided to

DtSupportPerFileCorrect

Addresses

The address of a fixed size buffer which receives the information about the next entry.

Return Values

This function returns NULL if the enumeration failed or if the end of the buffer has been reached.

If this function fails because of invalid input, then the FileName.Buffer field will be NULL.

Remarks

This function is a helper for DtSupportPerFileCorrect and abstracts away the differences between

different directory formats by conditionally populating a fixed structure with pointers to the various

possible fields in a directory entry. After a successful call, the FileName and Attributes fields of the

Addresses parameter will be filled in. All other fields will be optionally filled in.

FESF Custom Providers Kit Developers’ Guide

105

FesfIsMarkedForCorrection

BOOLEAN

FesfIsMarkedForCorrection(

 _In_bytecount_(sizeof(FESF_DIRECTORY_ENTRY)) PFESF_DIRECTORY_ENTRY

Addresses

);

Parameters

Addresses

Contains a buffer returned by FesfGetNextDirectoryEntry.

Returns

TRUE if the data provider has indicated that the entry is for a file which may require correction.

FESF Custom Providers Kit Developers’ Guide

106

FesfClearForCorrection

VOID

FesfClearForCorrection(

 _Inout_bytecount_(sizeof(FESF_DIRECTORY_ENTRY)) PFESF_DIRECTORY_ENTRY

Addresses);

Parameters

Addresses

Contains a buffer returned by FesfGetNextDirectoryEntry.

Remarks

This function instructs the data provider to not apply correction, thus returning the “raw size” of the

directory entry to the enumerating application.

FESF Custom Providers Kit Developers’ Guide

107

Process and Thread Support

Header: PsSup.h

Lib: OsrSupport.lib

Contains several support functions. Only one is liable to be of use.

FESF Custom Providers Kit Developers’ Guide

108

OsrGetProcessImageName
NTSTATUS

OsrGetProcessImageName(

 In PEPROCESS Process,

 Inout PUNICODE_STRING ProcessImageName

);

Parameters

Process

Refers to the process whose image is to be returned.

ProcessImageName

Describes where the return value should be placed. The space allocated (described by

ProcessImageName->Buffer and ProcessImageName->Length) must be large enough for the

return string.

Return Values

STATUS_SUCCESS if the ProcessImageName has been successfully set up.

STATUS_BUFFER_OVERFLOW if the buffer described by ProcessImageName is too small. In this case

ProcessImageName->Length is set to the required length.

Other failure statuses can be returned.

Remarks

This function returns the image name associated with the provided process.

