

[CLIENT]
Crash Dump Analysis Report

The following report offers insight and root-cause analysis for a specific, client-provided crash scenario.

 [CLIENT] Crash Dump Analysis Report

2 ©| OSR Open Systems Resources, Inc.

© 2009 OSR Open Systems Resources, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in

any form or by any means -- graphic, electronic, or mechanical, including photocopying, recording,

taping, or information storage and retrieval systems -- without written permission of:

OSR Open Systems Resources, Inc.

105 Route 101A Suite 19

Amherst, New Hampshire 03031

+1 (603) 595-6500

OSR, the OSR logo, “OSR Open Systems Resources, Inc.”, and “The NT Insider” are trademarks of OSR

Open Systems Resources, Inc. All other trademarks mentioned herein are the property of their owners.

Printed in the United States of America

Document Identifier: UL219

LIMITED WARRANTY

OSR Open Systems Resources, Inc. (OSR) expressly disclaims any warranty for the information presented

herein. This material is presented “as is” without warranty of any kind, either express or implied,

including, without limitation, the implied warranties of merchantability or fitness for a particular

purpose. The entire risk arising from the use of this material remains with you. OSR’s entire liability and

your exclusive remedy shall not exceed the price paid for this material. In no event shall OSR or its

suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of

business profit, business interruption, loss of business information, or any other pecuniary loss) arising

out of the use or inability to use this information, even if OSR has been advised of the possibility of such

damages. Because some states/jurisdictions do not allow the exclusion or limitation of liability for

consequential or incidental damages, the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS

This material is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is

subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Right in Technical Data and Computer

Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer

Software--Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is OSR Open Systems

Resources, Inc. Amherst, New Hampshire 03031.

 [CLIENT] Crash Dump Analysis Report

3 ©| OSR Open Systems Resources, Inc.

Table of Contents

PROBLEM REPORT ... 4

ANALYSIS RESULTS ... 4

ANALYSIS DETAILS .. 4

RECOMMENDATIONS .. 9

FURTHER SERVICES .. 9

Training .. 10

Design/Code Review ... 10

 [CLIENT] Crash Dump Analysis Report

4 ©| OSR Open Systems Resources, Inc.

PROBLEM REPORT
<Client> has indicated to OSR that they are experiencing sporadic crashes when running their software

on a particular Windows 2000 installation. The crash so far has been 100% reproducible while

performing stress testing, though the crash location is not always the same.

Initial triage by <Client>'s engineers has been performed and they believe the issue to be a possible

memory corruption.

ANALYSIS RESULTS
After our analysis, we do not believe this to be a memory corruption issue. Instead, we believe that the

<CLIENT DRIVER> driver is allocating dispatcher objects out of paged pool. Dispatcher Objects are wait

locks (such as events, semaphores, and mutexes) that are used for synchronization. Because dispatcher

objects are manipulated by the dispatcher at interrupt request levels (IRQLs) greater than or equal to

DISPATCH_LEVEL, all dispatcher objects must be non-pageable.

This also explains why the problem was not reproducible across all machines tested. This type of crash

will only appear if the pageable memory is actually paged out at the time of access. In the interest of

performance, the Memory Manager will only page out pageable memory when memory pressure

warrants. It could be that the stress testing being performed on this platform (which had limited

memory) resulted in greater than usual memory pressure, flushing out the bug.

ANALYSIS DETAILS
In order to understand the environment, we have identified the crash to be from a Windows 2000

Service Pack 4 system. The system is running with a single processor and 256MB of RAM. A scan of the

loaded module list indicates that there are several third party drivers present, including drivers other

than those supplied by <CLIENT>.

Analysis always begins with the !analyze -v instruction, which performs an automated analysis of the

crash:

kd> !analyze -v

* *

* Bugcheck Analysis *

* *

IRQL_NOT_LESS_OR_EQUAL (a)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is usually

caused by drivers using improper addresses.

If a kernel debugger is available get the stack backtrace.

Arguments:

Arg1: e1d1d800, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000001, bitfield :

 bit 0 : value 0 = read operation, 1 = write operation

 [CLIENT] Crash Dump Analysis Report

5 ©| OSR Open Systems Resources, Inc.

 bit 3 : value 0 = not an execute operation, 1 = execute operation (only on

chips which support this level of status)

Arg4: 80431079, address which referenced memory

Debugging Details:

WRITE_ADDRESS: e1d1d800 Paged pool

CURRENT_IRQL: 2

FAULTING_IP:

nt!KiUnwaitThread+d

80431079 8916 mov dword ptr [esi],edx

DEFAULT_BUCKET_ID: DRIVER_FAULT

BUGCHECK_STR: 0xA

PROCESS_NAME: Idle

TRAP_FRAME: 804704dc -- (.trap 0xffffffff804704dc)

ErrCode = 00000002

eax=ff983e0c ebx=ff983da0 ecx=ff983da0 edx=e1d1d800 esi=e1d1d800 edi=ff983e90

eip=80431079 esp=80470550 ebp=80470574 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000302

nt!KiUnwaitThread+0xd:

80431079 8916 mov dword ptr [esi],edx ds:0023:e1d1d800=????????

Resetting default scope

LAST_CONTROL_TRANSFER: from 80431079 to 80466b77

STACK_TEXT:

804704dc 80431079 00000001 bfc750f9 816d91e4 nt!KiTrap0E+0x20b

80470554 804312a5 00000000 804705a4 ff983e88 nt!KiUnwaitThread+0xd

80470574 804306cd 00000051 818a2220 80470680 nt!KiWaitTest+0xdf

80470664 80430658 8046c470 8046c700 ffdff000 nt!KiTimerListExpire+0x6d

80470690 80463247 8047fd60 00000000 00033c50 nt!KiTimerExpiration+0xb4

804706a4 804631e2 0000000e 00000000 00000000 nt!KiRetireDpcList+0x30

804706a8 00000000 00000000 00000000 00000000 nt!KiIdleLoop+0x26

STACK_COMMAND: kb

FOLLOWUP_IP:

nt!KiUnwaitThread+d

80431079 8916 mov dword ptr [esi],edx

SYMBOL_STACK_INDEX: 1

SYMBOL_NAME: nt!KiUnwaitThread+d

FOLLOWUP_NAME: MachineOwner

MODULE_NAME: nt

IMAGE_NAME: ntoskrnl.exe

DEBUG_FLR_IMAGE_TIMESTAMP: 40d1d183

FAILURE_BUCKET_ID: 0xA_nt!KiUnwaitThread+d

BUCKET_ID: 0xA_nt!KiUnwaitThread+d

 [CLIENT] Crash Dump Analysis Report

6 ©| OSR Open Systems Resources, Inc.

Followup: MachineOwner

The !analyze output indicates that this crash the result of an invalid memory reference.

IRQL_NOT_LESS_OR_EQUAL is a common crash that is seen often in the field and can be a result of a

violation of the IRQL rules enforced by the system.

If we view the interpreted arguments, we see that someone has attempted to write to address

0xe1d1d800 at IRQL DISPATCH_LEVEL:

Arg1: e1d1d800, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000001, bitfield :

 bit 0 : value 0 = read operation, 1 = write operation

We know that IRQL value 2 is DISPATCH_LEVEL from WDM.H:

#define DISPATCH_LEVEL 2 // Dispatcher level

From the Debugging Details output we also see that this address is a paged pool address, meaning that

the data buffer being accessed was allocated using ExAllocatePoolWithTag specifying the paged pool

value as the PoolType:

Debugging Details:

WRITE_ADDRESS: e1d1d800 Paged pool

From those pieces of the !analyze information alone, we have the reason for the crash. An attempt was

made to access pageable memory at DISPATCH_LEVEL, which will lead to a crash sooner or later as it is a

violation of the IRQL rules. We continue the analysis however in the hopes of tracking this issue back to

the driver responsible for the bug.

Unfortunately the call stack contains only the operating system and thus there is no obvious driver to

blame. Thus, we must perform manual analysis from this stage on.

The first step in the manual analysis is to set the debugger context to that of the trap frame indicated in

the !analyze output. This trap frame records the register state at the time of the invalid memory

reference, allowing us to debug the crashing state:

kd> .trap 0xffffffff804704dc

ErrCode = 00000002

eax=ff983e0c ebx=ff983da0 ecx=ff983da0 edx=e1d1d800 esi=e1d1d800 edi=ff983e90

eip=80431079 esp=80470550 ebp=80470574 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000302

nt!KiUnwaitThread+0xd:

80431079 8916 mov dword ptr [esi],edx ds:0023:e1d1d800=????????

 [CLIENT] Crash Dump Analysis Report

7 ©| OSR Open Systems Resources, Inc.

This indicates that the code is treating the value in ESI as a pointer and is trying to overwrite the pointer

contents with the contents of the EDX register. Unfortunately the CPU is unable to translate the pointer

value that is in ESI, leading to the crash.

The debugger indicates the inability to read the crashing address by displaying question marks. We can

also examine the state of the pointer with the !pte command:

kd> !pte e1d1d800

E1D1D800 - PDE at C0300E1C PTE at C0387474

 contains 0517E163 contains 06B2C080

 pfn 517e G-DA--KWV not valid

 PageFile 0

 Offset 6b2c

 Protect: 4

Thus, the page is in fact paged out to a paging file and the system is guaranteed to crash on this memory

access due to the current IRQL. While this validates our initial analysis, it still does not explain where the

memory location came from, or what it was being used for. In order to determine that, we must

examine the assembly instructions leading up to the crash to determine where the value in ESI came

from.

kd> u nt!KiUnwaitThread nt!KiUnwaitThread+0xf

nt!KiUnwaitThread:

8043106c 095150 or dword ptr [ecx+50h],edx

8043106f 8b4158 mov eax,dword ptr [ecx+58h]

80431072 53 push ebx

80431073 56 push esi

80431074 8b7004 mov esi,dword ptr [eax+4]

80431077 8b10 mov edx,dword ptr [eax]

80431079 8916 mov dword ptr [esi],edx

Working backwards from the faulting instruction, we see that ESI came from the contents of EAX plus

0x4:

80431074 8b7004 mov esi,dword ptr [eax+4]

Moving back further, we see that EAX came from ECX plus 58 hex:

8043106f 8b4158 mov eax,dword ptr [ecx+58h]

Because this function utilizes the ECX register without previously having loaded it with a value, this

function can be identified as a fastcall function. From this, we can determine that ECX contains the first

parameter to the function. It seems reasonable to believe that the first parameter to the routine

KiUnwaitThread would be a pointer to a KTHREAD structure, which we verified using the !pool

command:

kd> !pool ff983da0

 ff983000 size: c0 previous size: 0 (Allocated)

 ff9830c0 size: c0 previous size: c0 (Free)

 ff983180 size: c0 previous size: c0 (Allocated)

 ff983240 size: c0 previous size: c0 (Allocated)

 [CLIENT] Crash Dump Analysis Report

8 ©| OSR Open Systems Resources, Inc.

 ff983300 size: c0 previous size: c0 (Allocated)

 ff9833c0 size: c0 previous size: c0 (Allocated)

 ff983480 size: c0 previous size: c0 (Allocated)

 ff983540 size: 260 previous size: c0 (Allocated) LScn

 ff9837a0 size: 20 previous size: 260 (Free) Qota

 ff9837c0 size: 220 previous size: 20 (Allocated) SIce

 ff9839e0 size: 140 previous size: 220 (Free) MmCa

 ff983b20 size: 60 previous size: 140 (Allocated) MmLd

 ff983b80 size: 60 previous size: 60 (Lookaside) MmCa

 ff983be0 size: 20 previous size: 60 (Free) Npfs

 ff983c00 size: c0 previous size: 20 (Allocated)

 ff983cc0 size: c0 previous size: c0 (Allocated)

*ff983d80 size: 280 previous size: c0 (Allocated) *Thre (Protected)

Using this information, we can begin digging in to the KTHREAD structure using the above offsets to

determine what pageable field is being accessed at DISPATCH_LEVEL.

First, we must view the field at offset 58 hex:

kd> dt nt!_kthread ff983da0

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 MutantListHead : _LIST_ENTRY [0xff983db0 - 0xff983db0]

 +0x018 InitialStack : 0xbcebb000

 +0x01c StackLimit : 0xbceb8000

 +0x020 Teb : (null)

 +0x024 TlsArray : (null)

 +0x028 KernelStack : 0xbcebace8

 +0x02c DebugActive : 0 ''

 +0x02d State : 0x5 ''

 +0x02e Alerted : [2] ""

 +0x030 Iopl : 0 ''

 +0x031 NpxState : 0xa ''

 +0x032 Saturation : 0 ''

 +0x033 Priority : 9 ''

 +0x034 ApcState : _KAPC_STATE

 +0x04c ContextSwitches : 0x6e

 +0x050 WaitStatus : 258

 +0x054 WaitIrql : 0 ''

 +0x055 WaitMode : 0 ''

 +0x056 WaitNext : 0 ''

 +0x057 WaitReason : 0 ''

 +0x058 WaitBlockList : 0xff983e0c _KWAIT_BLOCK

 +0x05c WaitListEntry : _LIST_ENTRY [0x8128247c - 0xff98407c]

 …

We see here that offset 58 hex contains a pointer to a KWAIT_BLOCK structure. KWAIT_BLOCKs are the

structures used by the dispatcher to keep track of all the objects that a particular thread is waiting on.

In order to find the crashing address, we must view this structure and see what field is at offset 4:

kd> dt nt!_KWAIT_BLOCK 0xff983e0c

 +0x000 WaitListEntry : _LIST_ENTRY [0xe1d1d800 - 0xe1d1d800]

 +0x008 Thread : 0xff983da0 _KTHREAD

 +0x00c Object : 0xe1d1d7f8

 +0x010 NextWaitBlock : 0xff983e54 _KWAIT_BLOCK

 +0x014 WaitKey : 0

 +0x016 WaitType : 1

 [CLIENT] Crash Dump Analysis Report

9 ©| OSR Open Systems Resources, Inc.

And we finally arrive at our crashing ESI value, it is the Blink field of the LIST_ENTRY at the start of the

structure. Note also the dispatcher object address, which is in close proximity to the failing address. This

indicates that the thread in this wait block structure is waiting on a dispatcher object in paged pool. If

we view the thread indicated here with !thread we find your driver is the driver performing the wait

operation:

kd> !thread 0xff983da0

THREAD ff983da0 Cid 8.528 Teb: 00000000 Win32Thread: 00000000 WAIT: (Executive)

KernelMode Alertable

 e1d1d7f8 unable to get Wait object

Not impersonating

Owning Process 818a5020

Wait Start TickCount 211849 Elapsed Ticks: 201

Context Switch Count 110

UserTime 0:00:00.0000

KernelTime 0:00:00.0000

Start Address pdfs (0xbc37b140)

Stack Init bcebb000 Current bcebace8 Base bcebb000 Limit bceb8000 Call 0

Priority 9 BasePriority 8 PriorityDecrement 0 DecrementCount 0

ChildEBP RetAddr Args to Child

bcebad00 8042b241 00000000 00000000 00000000 nt!KiSwapThread+0xc5

bcebad28 bc37b224 e1d1d7f8 00000000 bcebad00 nt!KeWaitForSingleObject+0x1a1

bcebad48 bc37b325 00000000 00000001 bcebad74 <CLIENT DRIVER>+0x5224

bcebad9c bc37b157 e1d1d7c8 bcebaddc 80453844 <CLIENT DRIVER>+0x5325

bcebada8 80453844 e1d1d7d0 00000000 00000000 <CLIENT DRIVER>+0x5157

bcebaddc 80468022 bc37b140 e1d1d7d0 00000000 nt!PspSystemThreadStartup+0x54

00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

This strongly indicates that <CLIENT DRIVER> is allocating dispatcher objects out of paged pool.

RECOMMENDATIONS
Our recommendation is to review all existing driver code and ensure that all dispatcher objects are non-

pageable. Failure to do so will continue to lead to similar crashes.

Also, this crash makes it clear that this driver has never been tested under Driver Verifier. Driver Verifier

would have forced this condition during routine testing, instead of having to wait for a system

sufficiently low on memory to force the Memory Manager to begin paging data out to disk. Thus, we

would strongly recommend performing a series of stress tests on the driver with Driver Verifier, to help

identify this and other similar problems.

FURTHER SERVICES
Based on the analysis of this crash, <CLIENT> may be interested in working with OSR to perform any of

the following services.

 [CLIENT] Crash Dump Analysis Report

10 ©| OSR Open Systems Resources, Inc.

Training

It is unclear from the crash if this is a result of a lack of understanding of the IRQL rules or a simple

coding error. If the reason for the crash is unclear in any way, it may be beneficial to <CLIENT> to attend

OSR’s Writing WDM Kernel Mode Drivers seminar. This course covers the topic of IRQL in great detail.

In addition to or instead of WDM training, OSR also offers a Kernel Debugging seminar, which covers

many of the techniques described in this analysis.

Design/Code Review

These types of issues could also be addressed via a thorough review of the existing driver code. This

could also discover any fundamental design issues that are lurking in the code base.

