

OSR FILE ENCRYPTION SOLUTION FRAMEWORK

SOLUTION DEVELOPERS’ GUIDE
V2.0

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2

Table of Contents

1 Copyright Notice .. 6

2 Change Log ... 7

3 Introduction .. 8

4 FESF Overview and Basic Concepts .. 9

4.1 Policy ... 9

4.2 Policy Definition and Storage .. 10

4.3 Communicating Policy from Client Solution to FESF .. 11

4.4 Key Material and Encryption Identification .. 11

4.5 Where is the Encryption Actually Done and What Algorithms Are Supported? 11

4.6 Existing Files Are Not Automatically Encrypted ... 12

4.7 The Basics of Policy Operation ... 12

4.8 Exempting Drives/Shares from Policy Determinations ... 13

4.9 FESF Policy Caching ... 14

4.10 Files or Streams? .. 14

5 FESF Components and Interfaces ... 16

5.1 FESF Kernel Mode Components .. 17

5.2 FESF User Mode Components ... 17

5.3 Client Solution Components .. 18

6 Designing and Building a Solution... 20

6.1 Solution Policy DLL Callback Functions .. 20

6.2 FESF Policy Before the Solution Policy DLL Starts ... 22

6.3 Solution Policy DLL Initialization.. 22

6.4 Returning Failure from Solution Policy DLL Callbacks .. 22

6.5 Guidance for Implementing Callback Functions .. 22

6.6 Guidance Regarding Solution Policy DLL Solution Header Data .. 24

6.7 Working with Local, Network, and Shadow Volume File Paths ... 24

6.8 A Note About Raw File Access ... 25

6.9 Installing and Using Fe2Policy ... 26

6.10 FESF Kernel Component Logging and Tracing .. 30

7 Building FESF From Source ... 32

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3

7.1 FESF Canonical User-Mode Components ... 32

7.2 FESF Sample Solution Components .. 32

7.3 FESF Kernel Mode Components .. 33

8 Notes on Installing FESF with Your Solution ... 35

8.1 About the Sample Installer Project .. 35

8.2 About Customizing FESF Component Names ... 35

9 FESF Known Restrictions and Limitations .. 37

10 Solution Policy DLL Callback Function Reference .. 39

10.1 About Implementing Your Callback DLL .. 39

PolicyDllInit callback function ... 41

PolApproveCreateLink callback function ... 43

PolApproveRename callback function ... 45

PolApproveTransactedOpen callback function .. 47

PolAttachVolume callback function ... 49

PolFreeHeader callback function .. 51

PolFreeKey callback function .. 52

PolGetKeyFromHeader callback function .. 54

PolGetKeyNewFile callback function .. 57

PolGetLockRounding callback function ... 60

PolGetPolicyDirectoryListing callback function .. 62

PolGetPolicyExistingFile callback function .. 64

PolGetPolicyNewFile callback function .. 67

PolReportFileInconsistent callback function ... 71

PolReportLastHandleClosed callback function ... 72

PolUnInit callback function ... 74

11 FESF Policy Function Reference ... 75

FePolSetConfiguration function ... 76

12 FesfUtil2 Function Reference .. 77

12.1 Using FesfUtil2 ... 77

FesfUtil2FixFileTag Function .. 80

FesfUtil2GetExecutablePathForThreadId Function ... 81

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4

FesfUtil2GetFileSize Function .. 82

FesfUtil2GetFullyQualifiedPath Function ... 83

FesfUtil2GetSidForThreadId Function (deprecated) ... 84

FesfUtil2GetUniversalFilePath Function ... 85

FesfUtil2GetVersion Function ... 86

FesfUtil2IsFileFesfEncrypted Function .. 87

FesfUtil2IsThreadIdInSid Function .. 88

FesfUtil2PurgePolicyCache Function (file variant) .. 89

FesfUtil2PurgePolicyCache Function (thread variant) .. 90

FesfUtil2ReadHeaderExclusive Function .. 91

FesfUtil2ReadHeaderUnsafe Function ... 92

FesfUtil2SetPolicyCacheState Function ... 93

FesfUtil2UpdateHeaderExclusive Function .. 94

FesfUtil2UpdateHeaderExclusiveWithExtension Function ... 95

FesfUtil2UpdateHeaderUnsafe Function ... 97

12.2 FesfUtil2 Classes & Structures .. 98

FESF_UTIL2_SOLUTION_HEADER .. 99

FEU2Exception .. 101

13 FESF Stand-Alone Library Function Reference ... 102

13.1 About the Stand-Alone Library .. 102

13.2 About the FE2Sa Functions... 102

DecryptCallback function .. 104

EncryptCallback function ... 106

FesfSaDecrypt function .. 108

FesfSaEncrypt function .. 110

FesfSaIsFileEncrypted function ... 112

FesfSaReadHeader function .. 113

FesfSaWriteHeader function ... 115

14 FESF Policy Data Structures .. 116

FE2_POLICY_ALGORITHM structure ... 117

FE2_POLICY_CONFIG structure .. 120

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5

FE_POLICY_PATH_INFORMATION structure ... 125

FE_POLICY_VOLUME_INFORMATION structure ... 127

15 FESF and Support for Cloud Storage .. 129

15.1 Why Interoperability Is Complex ... 129

15.2 OSR’s Approach to Interoperability for FESF ... 132

15.3 FESF Interoperability with Cloud Storage Products .. 134

15.4 Cloud Storage Products We Test With ... 135

15.5 Summary and OSR’s Recommendations .. 136

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6

1 Copyright Notice

© 2015-2025 OSR Open Systems Resources, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or

by any means -- graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage

and retrieval systems -- without written permission of OSR Open Systems Resources, Inc., 889 Elm St, 6th Floor,

Manchester, New Hampshire 03101 USA | (603) 595-6500 | info@osr.com

OSR, the OSR logo, “OSR Open Systems Resources, Inc.”, and “The NT Insider” are registered trademarks of OSR Open

Systems Resources, Inc. All other trademarks mentioned herein are the property of their owners.

U.S. GOVERNMENT RESTRICTED RIGHTS

This material is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of The Right in Technical Data and Computer Software clause at

DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software--Restricted Rights 48 CFR

52.227-19, as applicable. Manufacturer is OSR Open Systems Resources, Inc. Manchester, New Hampshire 03101.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7

2 Change Log
Document Date FESF

Version
Location of
Change

Description of Change

1 April 2025 V2.0
Beta 1

 Revisions to reflect changes in FESF V2.

August 2025 V2.0
Release

 Updates for Release, particularly in AttachVolume, Fe2Sa,
installation, and others.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8

3 Introduction
This guide provides the necessary architectural and reference information to allow Client developers to design and

interface a Solution with the OSR File Encryption Solution Framework (FESF). A "Client" (or, alternatively, “licensee”)

in this context means a licensed user of the FESF product. A "Solution" is a group of one or more Client-developed

programs that, combined with FESF, perform or utilize on-access per-file encryption services. Solutions might range in

scope from a basic file encryption product to a document management system that includes per-file encryption as a

small part of a much more comprehensive product suite.

This guide seeks to provide the conceptual background and terminology necessary to allow you to successfully design

and build your Solution using FESF. The guide also contains reference material for the callbacks from FESF to your

Solution and the support routines provided by FESF to make writing your Solution easier.

The reader is assumed to be a C/C++ system programmer who is familiar with general Windows architectural

concepts such as security and common Windows programming concepts.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9

4 FESF Overview and Basic Concepts
The OSR File Encryption Solution Framework (FESF) allows Clients to incorporate transparent, on-access, per-file

encryption into their products. While adding on-access encryption sounds like something that should be pretty

simple, it turns out to be something that's exceptionally complicated. Creating a Solution that provides on-access

encryption that performs well is even more difficult.

FESF handles most of the necessary complexity, including the actual encryption operations, in kernel mode. This

allows Clients to build customized file encryption products with no kernel-mode programming.

To understand what needs to be created to use FESF to realize a complete product, it's important to understand a few

concepts that are central to FESF. We discuss these concepts in this section of this document.

4.1 Policy
When we talk about "Policy" in FESF, we mean exactly two things:

• Whether data written to a newly created file should be transparently encrypted before being stored on disk.

Transparent encryption also implies storing Client-defined control information and FESF metadata information

within the file.

• Whether the data read from an existing FESF encrypted file should be decrypted before being returned to the

application that's reading it and whether data written by that application should be encrypted before it's stored

in that existing FESF encrypted file on disk.

Policy decisions are made in user-mode by the Client Solution. The Client Solution code is called to make a Policy

decision whenever (a) a new file is created (and before any data is written to it), or (b) an existing FESF encrypted file

is opened (and before any user data has been read from or written to it). Although there are a few additional events

that will result in FESF calling the Client Solution, these are the only times when FESF calls the Client Solution to ask

for a Policy decision.

The Client Solution will use data provided by FESF, and optionally other data it collects or maintains independent of

FESF, as the basis for its policy decision. When a Policy decision is required, FESF provides the following information to

the Solution:

• The fully qualified path of the file being created or accessed. Specifically:

• For files on local volumes, this includes the Volume GUID identifying the volume on which the file

resides, plus the directory path and file name. The Volume GUID unambiguously identifies the

volume and can be converted to a drive letter by an FESF-supplied utility function.

• For files on the network, the Volume GUID is predefined as being FE_NETWORK_GUID. The server

and share are supplied along with the share-relative path to the file.

• For files on shadow volumes, the Volume GUID is predefined as being FE_SHADOW_VOLUME_GUID.

The device name of the shadow volume is supplied as well as the volume relative path to the file.

• The Thread ID (TID) of the thread that is creating or accessing the file. Given this TID, the Solution can determine

the fully qualified path of the executing image, using an FESF-provided utility function.

• The Security ID (SID) under which the application is executing. The SID identifies a user (including username and

domain) or other Windows security principal (such as a user or security group) that is performing the file access.

See https://learn.microsoft.com/en-us/windows/win32/secauthz/security-identifiers for more information.

https://learn.microsoft.com/en-us/windows/win32/secauthz/security-identifiers

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

• The file access (read data, write data, and others) that was granted to the accessing application.

• The action taken on the file being accessed (technically, the file’s “disposition”). This indicates whether the file is

being newly created, overwritten, appended, or just opened.

Thus, when a new file is created or an existing FESF encrypted file is accessed, the Client Solution determines policy

for that file based on some combination of the following information provided by FESF:

• Volume (or server and share), directory path, and name of the file being accessed

• Path and name of the accessing application

• Security ID under which the application is running.

• The action being performed on the file.

• The access granted to the application for this specific open instance of the file.

Which of these variables are considered, and how they may be used to define Policy, is entirely up to the Client

Solution. In addition, variables other than those above provided directly by FESF – such as the system on which the

application is running, or the day of the week – could also be used.

By way of example, a very simple policy implemented by a Client Solution might be:

"We want any files that are created in the directory \MySecretStuff\ on the volume that is the D drive on this

workstation to be encrypted."

That's pretty straight forward. Or a slightly more involved example:

"Decrypt all FESF encrypted files on the network with the path \\SpecialForces\Missions\ImpossibleMission\

only when they are accessed by a user that's in the Active Directory security group SecretAgents and from a

system that is actively joined to a domain named MI5 or MI6."

That's also pretty simple but requires the Solution to get the name of the domain to which the machine is joined

outside the mechanisms provided by FESF (It's easy: You just call the Windows function LsaQueryInformationPolicy).

A slightly more complex policy that a Solution could implement would be:

"We want all existing encrypted files accessed by Microsoft Outlook, regardless of the directory that the file

may be in, to not be decrypted when Outlook accesses it, unless the file has the file suffix OST or PST."

This third example policy would ensure that if a user attached an encrypted document to an Outlook email, the

encrypted version of the file would be sent, while still allowing locally stored Outlook data files (the OST and PST files)

to be encrypted.

4.2 Policy Definition and Storage
So, where and how is Policy determined? And, once Policy has been determined where and how is it stored? These

are both entirely under the control of the Client Solution. In terms of definition and storage, the only thing that is

important to FESF is that the Client Solution promptly responds to callbacks from FESF when FESF asks it for Policy

decisions.

A Solution's Policy could be defined by a GUI program or even an MMC snap-in developed as part of the Solution.

Because the factors that are used to define Policy are determined by the Client Solution, FESF does not provide any

standard mechanism for defining Policy.

Some Solutions may store the Policy information in a proprietary Policy server. Others might encode the information

and store it in the Active Directory, using custom extensions of the AD schema. Because the format and content of

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

Policy is entirely defined by the Client Solution, FESF does not require (or provide) any standard location for Policy

storage.

4.3 Communicating Policy from Client Solution to FESF
When FESF wants to know the Policy for a given access operation on a particular file, it calls a callback in the Client

Solution. The entity within FESF that performs this callback is the FESF Policy Service (Fe2Policy). Fe2Policy is a

standard Windows user-mode service that runs under the local system account. The callback function that Fe2Policy

calls is provided by the Solution in a DLL known as the Solution Policy DLL. Fe2Policy loads this DLL dynamically when

it starts based on a Registry parameter.

We'll describe a great deal more about the Solution Policy DLL later in this document. However, what's important to

understand at this point is that the Solution Policy DLL is the (one and only) way that FESF asks the Client Solution for

Policy decisions. Thus, the Solution Policy DLL is the interface between FESF and the Client Solution when it comes to

determining Policy for a file.

For example, each time a new file is created on a system with FESF running, Fe2Policy will call the Solution Policy

DLL's PolGetPolicyNewFile callback function. As the return value from this function, the Solution Policy DLL indicates

whether data should be encrypted when written to the file that's being created or data should be written to the file

that’s being created as clear text. Similarly, each time an existing FESF encrypted file is opened, the Solution Policy

DLL's PolGetPolicyExistingFile callback function is invoked. And, similarly, the return value from this function indicates

whether FESF should transparently encrypt/decrypt data when this application instance writes/reads the file, or

whether FESF should provide "raw" access (that is, access to the ciphertext without transparent encryption or

decryption).

4.4 Key Material and Encryption Identification
As previously described, each time a new file is createdthe Solution Policy DLL is called by FESF. If the Solution Policy

DLL indicates that data written to the newly created file should be encrypted, the Solution returns three things to

FESF:

1. Solution Header Data: This data – which is entirely defined by the Client Solution – will be stored by FESF in

the newly created file exactly as provided by the Client Solution. This Solution Header Data will be provided

by FESF to the Client Solution whenever the file is subsequently opened and the key is required. The Solution

Header Data may contain any information useful to the Solution, with the restriction that having determined

decrypted access is desired the Solution must be able to derive the key data for the file given this Header

Data.

2. Algorithm ID: This indicates which encryption algorithm (and associated properties) FESF will use to

encrypt/decrypt the file's data.

3. Key: The key data to be used to encrypt and/or decrypt the file's data.

When an existing encrypted file is opened, the Solution Policy DLL is called with the path of the file being opened and

the Solution Header Data that was previously stored in the file (along with other information). This Solution Header

Data was supplied by the Solution when the file was created. Using this Solution Header Data, the Solution Policy DLL

is responsible for returning an Algorithm ID and key data for FESF to use to decrypt the file's data and encrypt any

data that may be subsequently written to the file.

4.5 Where is the Encryption Actually Done and What Algorithms Are Supported?
In the course of normal operations, encryption and decryption are performed in kernel-mode under FESF's control.

However, FESF itself does not include any encryption components or algorithms. Rather, FESF calls Microsoft's

Cryptography API: Next Generation (CNG) package to accomplish the actual encryption and decryption operations.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

FESF has built-in support for using CNG to perform AES 128 CBC and AES 256 CBC encryption. Custom CNG

Cryptographic Algorithm Providers can be written by Clients to support other algorithms supported by CNG, or even

custom-built algorithms.

FESF is careful to handle key material securely in kernel mode. For example, kernel components never store key

material in pageable memory and scrub the contents of memory used for key material storage prior to deallocation.

On systems where FESF is not installed, some encryption and decryption may be performed by the Client Solution in

user-mode with the assistance of FESF supplied Stand-Alone library functions and a user-supplied cryptographic

implementation.

4.5.1 A Word About Encryption Block Size and Initialization Vectors
FESF uses a block-size value of 256 bytes. This choice is arbitrary, but not changeable. Algorithms that provide a CBC

mode typically include a non-secret value known as the initialization vector. This prevents identical blocks from

appearing to be identical in the encrypted file content.

For AES CBC methods, FESF generates the Initialization Vector (IV) from the key material using a technique known as

the Encrypted Salt-Sector Initialization Vector (ESSIV). More details about how FESF generates the IV can be found in

the FE2Sa Function Reference section, elsewhere in this document.

4.6 Existing Files Are Not Automatically Encrypted
A careful reader might notice that we have so far only described how newly created files are transparently encrypted

by FESF and how existing files that are already FESF encrypted are handled by FESF. We have not, however, discussed

how existing files that are not encrypted become encrypted. In other words, continuing one of our previous examples

where we had the Policy:

"We want any files that are created in the directory \MySecretStuff\ on the volume that's the D drive on this

workstation to be encrypted."

Any files that are newly created in the directory \MySecretStuff\ would be automatically encrypted by FESF after this

policy was established (based on the response received when the Solution Policy DLL is called). But suppose some

files already existed in the \MySecretStuff\ directory when this Policy was established. How would these files become

encrypted?

The answer is: it is up to the Client Solution to request that those files be encrypted, if and when desired. This is

because only the Client Solution understands when Policy can be defined or changed, what security risk is associated

with having existing unencrypted files in various locations, how many files might need to be encrypted as a result of a

new Policy being created, and when an appropriate time to encrypt affected files might be. Some Client Solutions

might require Policy to be defined network-wide and then perform encryption of existing files on individual

workstations at "pre-boot" startup time (before users are allowed to login to the system). Others might choose to

never encrypt existing files. FESF provides complete flexibility in this regard.

It is also important to note that FESF does not provide any mechanism to directly encrypt an existing file. In fact, the

easiest way for a Client Solution to “encrypt an existing file” is for the Solution to copy the existing (cleartext) file to a

new file that its Solution Policy DLL decides should be encrypted, and then delete the original (cleartext) file.

4.7 The Basics of Policy Operation
With the background provided so far, we can now discuss more details about the flow of control for accessing files

when FESF is running.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

4.7.1 Raw vs Encrypted/Decrypted Access to Newly Created Files
For each new file that's created, FESF calls the Solution Policy DLL at its PolGetPolicyNewFile callback function to

determine the Policy for that file. In other words, FESF calls the Solution Policy DLL to determine whether the data

written to the file should be encrypted. If the Solution Policy DLL indicates that the data should be encrypted, FESF

next calls the Solution Policy DLL's PolGetKeyNewFile to get the Solution Header Data, Algorithm ID, and data

encryption Key for the newly created file.

Using the provided Algorithm ID and Key, FESF transparently encrypts data written to the file and decrypts data read

from the file. In addition, FESF adds its own control and consistency metadata information to the file, including the

Client-defined Solution Header Data, to enable later validation and decryption.

If the Solution Policy DLL indicates the data should not be encrypted, FESF performs no additional processing on the

file's data. The file's data is written without modification. The Solution Policy DLL's PolGetKeyNewFile is not called,

and FESF adds no additional information to this file.

4.7.2 Raw vs Encrypted/Decrypted Access to Existing Encrypted Files
For each existing FESF encrypted file that's accessed, the Solution Policy DLL is called at its PolGetPolicyExistingFile

callback function to determine whether that particular open instance should be granted raw or encrypted/decrypted

access.

Open instances that receive encrypted/decrypted access result in file data being transparently decrypted by FESF

when read and transparently encrypted by FESF when written. This is the typical mode for "permitted" applications.

Data is encrypted while stored (at rest) on disk, but applications transparently see ordinary (plaintext) data. To enable

these transparent encryption/decryption operations, FESF calls the Solution Policy DLL at its PolGetKeyFromHeader

callback function. When FESF calls PolGetKeyFromHeader, FESF passes the Solution Header Data that was stored with

the file and previously returned by the Solution Policy DLL's PolGetKeyNewFile callback when the file was created.

Given this Solution Header Data (and any other data that it may collect), the Solution Policy DLL returns the Algorithm

ID and the file’s data encryption/decryption Key.

Open instances that receive raw access see data without any additional processing by FESF. Raw access is typically

given to programs such as backup utilities. This results in the backed-up data being stored in encrypted form.

4.8 Exempting Drives/Shares from Policy Determinations
FESF allows the Client Solution to determine which volumes and network shares are eligible to host FESF encrypted

files. When each disk volume or network share is first discovered by Windows, FESF calls the Solution Policy DLL at its

AttachVolume callback function to determine if that volume should be under FESF control. If the files on that volume

will never need to be encrypted or decrypted by FESF, the Solution Policy DLL can instruct FESF to completely ignore

the volume, thereby removing FESF from any file processing in the volume’s path. When a volume is ignored the

Solution Policy DLL will not be called (a) when a new file is created on that volume, (b) an existing FESF encrypted file

is opened on the volume. When an existing FESF encrypted file is accessed on a volume that is not under FESF control,

raw (encrypted) data is always returned.

Calls to the Solution Policy DLL’s AttachVolume callback for volumes that are discovered by Windows during startup

(boot) processing are deferred. These callbacks take place as a result of the first file access that occurs following the

startup of Fe2Policy and the successful loading of the Solution Policy DLL.

The AttachVolume callback is a very powerful tool for Solution developers. It enables them to significantly reduce the

number of callbacks that occur to their Solution Policy DLLs for volumes where Policy will never need to be applied.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
4

4.9 FESF Policy Caching
A powerful feature of FESF is FESF Policy Caching. A Solution Policy DLL may enable FESF Policy Caching by setting the

AccessCache.Enable field of the FE2_POLICY_CONFIG structure to TRUE. To ensure good system performance, OSR

strongly recommends that all Solutions enable Policy Caching. Windows applications, including system components

such as the Windows shell (Explorer.exe), have a strong propensity to open and close files repeatedly. This is why

Policy Caching is so critical.

When FESF Policy Caching has been enabled by a Solution Policy DLL, FESF makes an entry in its kernel-mode Policy

Cache for the file after it returns from each call to PolGetPolicyNewFile or PolGetPolicyExistingFile. The data stored in

the FESF Policy Cache is based on the values passed into and returned by those functions, and includes:

• Accessing process. This is the process that owns the thread indicated in the ThreadId argument.

• Access. This is the value supplied in the Granted Access argument.

• FE_POLICY_RESULT. This is the return value from the Solution Policy DLL.

Note that these cache entries are associated exclusively with a particular file that is being opened. Each subsequent

time that same file is opened, FESF consults the FESF Policy Cache for the file. If an entry exists in the cache for the

same process and the same type of access, FESF uses the cached FE_POLICY_RESULT instead of calling the Solution

Policy DLL. This eliminates the overhead of calling the Solution Policy DLL to determine policy for a file, process, and

access type when the Solution Policy DLL has already returned the desired policy (for that file, policy and access type)

to FESF. An exception to this behavior is when a thread is "impersonating" (that is using different security information

than the process that owns the thread). The FESF Policy Cache is never consulted for files accessed by impersonating

threads.

The duration of this caching behavior lasts as long as the file remains open or Windows retains file (data) cache

information for the file, whichever is longer. On systems with lots of free memory, cache information can persist for a

very long time (many hours or even days) after a file has been closed. On systems with significant memory pressure,

caching might persist only as long as a thread actively has an open handle to a file.

While the life of the FESF Policy Cache cannot be extended arbitrarily, entries can be selectively removed from the

FESF Policy Cache at any time by the Solution. The Solution can remove entries in the FESF Policy Cache for a given file

or process by calling the FesfUtil2 function FesfUtil2PurgePolicyCache. This function can also be used to remove all

FESF Policy Cache entries for all files for all processes. Refer to the docs for FesfUtil2PurgePolicyCache for specific

information.

Also, overall FESF Policy caching behavior can also be dynamically enabled or disabled by a Solution at any time. This

is done using the FesfUtil2 function FesfUtil2SetPolicyCacheState. Refer to the docs for FesfUtil2SetPolicyCacheState

for more information.

Finally, it should be noted that if the FESF Policy Service terminates or becomes unresponsive, the FESF Policy Cache is

completely purged.

4.10 Files or Streams?
One final detail remains to be discussed. The FESF documentation, and even the names of interfaces, uniformly refers

to files as the unit of access. For example, we might describe the PolGetPolicyNewFile function as follows:

"A Solution Policy DLL's PolGetPolicyNewFile callback function determines whether a new file should be

created in encrypted or non-encrypted format."

While this is correct, it doesn't say anything about how FESF deals with alternate data streams ("streams") on file

systems that support them.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
5

FESF is fully stream aware. This means that FESF supports accessing, and optionally transparently encrypting and

decrypting, data on a per-stream basis on file systems that support alternate data streams. Therefore, for file systems

that support streams, the FESF documentation should be read as including "stream" whenever the term "file" is

encountered.

On file systems that support alternate data streams, the file name information passed into the Client Solution

includes the name of the stream when that stream is not the default data stream (that is, when the stream name is

not "::$DATA"). This means that on files with alternate data streams, FESF allows the Solution Policy DLL to establish

Policy on a per stream basis and not just on a per file basis. Also, while FESF will not call the Solution Policy DLL for

directories as a general rule, for file systems that support streams on directories it will call the Solution Policy DLL for

streams created on directories.

In terms of FESF Policy Caching, caching is done on a per-stream basis. Thus, on file systems that support alternate

data streams, the support function FesfUtl2PurgePolicyCache, when called for a file, applies to a specific stream of

the file (if the file has multiple data streams).

To repeat: as a general guideline, any reference in FESF documentation that refers to "files" should be understood to

refer to "streams" on file systems that support alternate data streams.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
6

5 FESF Components and Interfaces

The basic architectural layout of the FESF system is shown in Figure 1.

Figure 1 -- FESF Architectural Layout

Looking at Figure 1, Components shown in orange are developed, provided, and maintained by OSR. Items shown in

green are developed by the Client as part of the Client Solution.

Black solid lines indicate FESF architecturally defined interfaces that are documented and supported by OSR. They

represent a (synchronous) C/C++ function call and return interface.

The red lines are undocumented, unsupported, interfaces that are private and reserved to OSR and subject to change

in future FESF releases. The Client Solution should never invoke the interfaces defined by the red lines directly, but

rather should use the public, supported, interfaces designed and provided by FESF.

Kernel Mode

FESF Policy

Service

(Fe2Policy.exe)

User Mode

Client Solution Policy

Creation and

Storage, Key

Management and

Key Storage
Client Solution

Applications

and Utilities

FesfUtil2 Library

FESF Stand -

Alone Library

(FE2Sa.Lib)

Client Stand-Alone

Utilities (where FESF

is not installed)

FESF Kernel Mode Components

Client

Solution

Policy DLL

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
7

5.1 FESF Kernel Mode Components
The "big blue cloud" in Figure 1 represents the collection of OSR-supplied FESF Kernel Mode Components. We often

refer to these as the “canonical FESF components.” They comprise a set of file system Minifilters and their associated

libraries. There are two kernel-mode components that are installed as part of FESF V2: FESFV2.sys and Fe2Lower.sys.

The FESF Kernel Mode Components are responsible for intercepting file operations (such as CreateFile, ReadFile, and

WriteFile) on supported file systems and volumes, implementing Client Solution-specified Policies, managing

provision of the correct "view" (encrypted/decrypted or raw) of a given file's data based on the Client-specified Policy,

and also for performing the actual encryption/decryption operations via Microsoft's CNG kernel-mode library.

Source code for the kernel-mode portions of FESF is not provided as part of the FESF Standard License, but is available

to licensees as part of the FESF Source Kit.

5.2 FESF User Mode Components
The orange rectangles in Figure 1 represent FESF User Mode Components. These components comprise the Fe2Policy

service, the FesfUtil2 utility library, and the FESF Stand-Alone library (Fe2Sa.lib). OSR reserves the right to extend, add

to, revise, or remove these components in future FESF releases

5.2.1 FESF Policy Service (Fe2Policy.exe)
The FESF Policy Service is the interface between FESF and the components of a Solution that determine Policy. The

FESF Policy Service receives requests from the FESF Kernel Mode Components, converts them to the expected format,

and passes them to the Solution Policy DLL. All calls from the FESF Policy Service into the Solution Policy DLL are done

via conventional call/return interfaces.

It is important to understand that the only interface from FESF to a Client Solution is via Fe2Policy, which in turn calls

the Solution Policy DLL. While Solution components can call FESF to request information or perform utility functions,

all calls that originate from FESF come through Fe2Policy and thereby to the Solution Policy DLL.

The FESF Policy Service calls entry points in the Solution Policy DLL in the context of a worker thread. These calls are

synchronous. That is, the Solution Policy DLL must only return when it has the information requested (or else return

an error). When a call to the Solution Policy DLL is made, that call is blocking an associated kernel-mode file

operation. When the Solution Policy DLL returns from a call, the results are returned by the FESF Policy Service to the

FESF Kernel Mode Components.

The source code, and all the items necessary for building Fe2Policy from source, are provided as part of your FESF

License. This code is for reference only. OSR does not support changes or customizations to Fe2Policy.

The specifics of the interface between Fe2Policy and the Solution Policy DLL, are described later in this document in

the section Solution Policy DLL Callback Function Reference.

5.2.2 FesfUtil2 Library
FesfUtil2 provides support functions to the Client Solution. The FesfUtil2 Library may be accessed by Client Solutions

either as a statically linked library or as a shared DLL. See the documentation on FesfUtil2 later in this document.

The FesfUtil2 Library provides general utility support to Client Solutions, as its name implies. A few of the services that

FesfUtil2 provides are:

• Determining whether a given file is stored in FESF encrypted format.

• Determining the true size on disk of a file stored in FESF encrypted format.

• Translating a Volume GUID and file path, as provided by Fe2Policy, to a fully qualified local path

specification.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
8

• Retrieving the fully qualified path of a running application, given a Thread ID provided by Fe2Policy.

• Reading or updating the Solution Header Data that is stored on an FESF encrypted file.

• Globally enabling or disabling FESF Policy Caching.

The source code, and all the items necessary for building the FesfUtil2 Library from source are provided for your

reference as part of your FESF License. This code is provided for your reference only. OSR does not support changes or

customizations to FesfUtil2.

Additional details about FesfUtil2, including documentation for all the functions it makes available, is provided in the

section entitled FesfUtil2 Function Reference later in this document.

5.2.3 FESF Stand-Alone Library (Fe2sa.lib)
The FESF Stand-Alone library provides support for implementing Client Solution components on systems where FESF is

not running. Fe2Sa.lib is a cross-platform C/C++ library designed to work on multiple operating systems. Windows and

Linux are currently supported.

The FESF Stand-Alone Library provides support for operations that may be useful when FESF is not installed, such as

during a recovery operation or when dealing with FESF encrypted files on a Linux client that does not have FESF for

Linux installed. Currently, these operations include:

• Decrypting a file that was previously encrypted using FESF.

• Encrypting a file.

• Determining whether a given file is stored in the FESF encrypted format.

The source code for the FESF Stand-Alone Library, and all the items necessary for building Fe2Sa from source, are

provided as part of your FESF License. This code is for reference only. OSR does not support changes or

customizations to Fe2Sa. Also, OSR does not support the direct use of functions that are internal to Fe2Sa.

It is critically important to note that the FESF Stand-Alone library functions are not supported, and absolutely

cannot be safely used, on systems where FESF is running. Even though calls to Fe2Sa functions on systems where

FESF is running may appear to work properly, using the Stand-Alone library on systems where FESF is running can

lead to file corruption.

Any time you use the Fe2Sa functions on a system where FESF is installed but not running (for example, during

installation to bulk encrypt a group of files immediately after FESF has been installed but before the system has been

rebooted), it is critical that the system be rebooted before FESF is started to avoid any potential cache coherency

issues.

Additional details about Fe2Sa.lib, including documentation for all the functions it makes available, are provided in

the section entitled FESF Stand-Alone Library Function Reference later in this document.

5.3 Client Solution Components
The Client Solution will comprise as few or as many components as required to implement its design goals.

Components of the Solution may be local to or remote from any given system or (most likely) a combination of the

two. The only part of the Client Solution that is required by FESF is a Solution Policy DLL that will be called by the FESF

Policy service.

5.3.1 Client Solution Policy DLL
The Client Solution Policy DLL is provided by the Client. OSR includes a complete and well-documented sample

Solution Policy DLL (SampPolicy) that Clients can use as the basis for their own implementation. See the FESF Sample

Solution Guide for more information on the OSR-provided sample code.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
9

As previously described, the Solution Policy DLL is the primary interface point between FESF and the Client's product

implementation. Except for the initialization callback which is always called by name, callback functions in the

Solution Policy DLL are called by pointer. The Solution Policy DLL passes pointers to each of its callback functions

during initialization processing. After initialization, FESF calls callback functions in the Solution Policy DLL to determine

policy for a particular open instance of a file, as well as to retrieve the Solution Policy DLL defined Solution Header

Data and Key data for files that are to be encrypted/decrypted by FESF.

As an example of how things work, consider the Solution Policy DLL's PolGetPolicyNewFile function. This function is

called whenever a new file is being created on a supported file system. After the CreateFile has been successfully

processed by the target file system but before the user's call to open the file has completed, the FESF Policy Service

calls the Solution Policy DLL's PolGetPolicyNewFile callback function to determine if data subsequently written to this

file should be encrypted. If PolGetPolicyNewFIle indicates that the file is to be encrypted, FESF calls the Solution Policy

DLL's PolGetKeyNewFile to retrieve the Algorithm ID, Key, and Solution Header Data. During the call into the Solution

Policy DLL, the user application that called CreateFile (and the kernel-mode mechanism associated with this

operation) is blocked, waiting, until both PolGetPolicyNewFile and PolGetKeyNewFile return. As a result, all processing

done in the Solution Policy DLL must be prompt.

Processing for other callbacks in the Solution Policy DLL work similarly. The calls to PolGetPolicyExistingFile, and

PolGetKeyFromHeader take place after the application's CreateFile operation has been processed by the file system

on which the file is located, but before the application is informed of the result. Again, this call into the Solution Policy

DLL is blocking completion of Windows' kernel mode processing of this open operation and ultimately the

application's further progress.

5.3.1.1 Note on lack of serialization among Solution Policy DLL callbacks
A note is probably appropriate here about parallel operations. The FESF system as a whole is intrinsically

asynchronous. This reflects the way that the Windows OS does its work and is also considered "best practice" in terms

of overall system performance and throughput. As a result of this asynchronous design, multiple calls to the Solution

Policy DLL can take place in parallel. FESF provides no serialization for calls into the Solution Policy DLL. Thus, it will be

typical for multiple threads to call into the Solution Policy DLL simultaneously. In fact, it is even possible for the

Solution Policy DLL to get multiple simultaneous calls to the same callback function, such as PolGetPolicyNewFile for

the same file. This is possible when multiple threads attempt to access a file at the same time.

In the case that two different threads both simultaneously attempt to create the same (new) file, only one of them

will ultimately succeed (in kernel-mode processing). FESF will ignore the result returned by the Solution Policy DLL

from the second (and, hence, unsuccessful) attempt. Subsequent attempts to retrieve the Key Data and Solution

Header Data will consistently return the same Key Data and Solution Header Data that was actually used by the file.

This can get even more confusing, however, when multiple threads attempt to access an existing encrypted file

simultaneously. This could result in multiple simultaneous calls to the Solution Policy DLL's PolGetPolicyExistingFile

callback. If the openers each provide appropriate share access, multiple openers can succeed. So, in this case, the

results returned by the Solution Policy DLL's PolGetPolicyExistingFile callback will all be relevant.

In summary, when the FESF Policy Service calls the Solution Policy DLL, that call is synchronous in that an associated

file operation is being blocked while this call is in progress and the operation will only continue when the Solution

Policy DLL returns. However, the FESF Policy Service will call the Solution Policy DLL's entry points in parallel from

multiple worker threads (perhaps a few hundred!). The same callback function in the Solution Policy DLL can be called

an almost limitless number of times in parallel, and multiple different functions in the Solution Policy DLL can also be

called in parallel. It is the job of the Solution Policy DLL (and any user-mode components with which it communicates)

to provide whatever serialization may be required.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
0

6 Designing and Building a Solution
As previously described, the design of a given Client Solution is dependent almost entirely on the design goals and

scope of that Solution. The only required component of any given Client Solution is the Solution Policy DLL. In this

section, we'll describe the interface functions and major points to consider in implementing a Solution Policy DLL.

The FESF Policy Service calls callback functions in the Solution Policy DLL to determine Policy, gather data, provide an

opportunity for the Solution Policy DLL to exercise control over particular functions, and to perform other support

operations. The Solution Policy DLL is loaded dynamically by the FESF Policy Service via a call to the Windows function

LoadLibrary based upon the FESF configuration information in the Windows RegistryFe2Policy. After the Solution

Policy DLL is loaded, FESF calls PolicyDllInit to allow the Solution Policy DLL to perform initialization processing. This

initialization includes the Solution Policy DLL calling FePolSetConfiguration to inform FESF of various configuration

choices, including providing pointers to FESF for the callback functions that the Solution Policy DLL supports.

While the role of the Solution Policy DLL is always the same in any FESF system (it is always the primary interface

between FESF and the Client's implementation), different Client Solution architectures may result in the Solution

Policy DLL doing very different things. In some architectures, almost no processing is done in the Solution Policy DLL

aside from argument preparation and data marshalling. The Solution Policy DLL is essentially stateless. In these

architectures, actual policy determination and key management is done by a service with which the Solution Policy

DLL communicates. That service may either be hosted locally (on the same system as the Solution Policy DLL) or

remotely (on a server on a LAN system, for example).

In other Solution architectures, Clients may design their Solution Policy DLL to be a more active participant in policy

determination. In these architectures, the Solution Policy DLL might store policy and key information locally, and only

invoke a remote policy and/or key management service when local information is not available.

And, of course, there are infinite variations on the two Solution architectures that we've described.

Each approach to building a Solution Policy DLL has its particular advantages and disadvantages. The approach chosen

will ultimately depend on what best meets the needs for the overall product being built and the environment in

which it will be used. In any case, FESF does not impose any specific requirement or restriction on the Client Solution

architecture, beyond the requirement that returns from Solution Policy DLL callback functions must be prompt.

As an example of one basic approach to building a Solution using FESF – and as a demonstration of how to use the

provided support services and perform common operations – OSR provides the complete source and executables for

a Sample Solution. For more information about this sample, please refer to the FESF Sample Solution Guide.

6.1 Solution Policy DLL Callback Functions
The possible callback functions that a Solution Policy DLL can support are:

• PolicyDllInit – This is the only entry point into the Solution Policy DLL that FESF calls by name, and it must be

named PolicyDllInit. This callback function is called by FESF after the Solution Policy DLL has been loaded to allow

the Solution Policy DLL to perform initialization processing. This processing must include initializing a

FE2_POLICY_CONFIG structure and filling it in with pointers to the other callback functions supported by the

Solution Policy DLL. The FE2_POLICY_CONFIG must then be passed to FESF by the Solution Policy DLL calling

FePolSetConfiguration during its PolicyDllInit callback function processing. This callback function is required and

must be implemented by every Solution Policy DLL.

• PolAttachVolume – Called when a new volume or network share is discovered by FESF (for example, when a

thumb drive is inserted, a disk is formatted, or a network share is mapped). This gives the Solution Policy DLL the

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
1

option to have FESF support encryption/decryption on the volume or to have FESF ignore future file operations

on the volume. This callback function is optional.

• PolGetPolicyNewFile – Called when a new file is being created on a volume to which FESF has attached, to

determine if the file should be created in FESF encrypted format. This callback function is required and must be

implemented by every Solution Policy DLL. Note that for the purposes of FESF, a "new file being created" includes

an existing zero-length file being opened or the destructive create of any existing file. See the reference pages for

PolGetPolicyNewFile for the details.

• PolGetKeyNewFile – Called when a new file is being created in FESF encrypted format to get the Key Data and

Algorithm ID to be used to encrypt data for the file, as well as the Solution Header Data that will be stored with

the file. This callback function is required and must be implemented by every Solution Policy DLL.

• PolGetPolicyExistingFile – Called when an existing FESF encrypted file is being opened to determine if encrypted

data read from the file should be decrypted before it's returned and whether data written to the file should be

encrypted before it's written. This callback function is required and must be implemented by every Solution Policy

DLL.

• PolGetKeyFromHeader – Called when an existing FESF encrypted file is being opened, and the Solution Policy DLL

has previously indicated (in a prior call to PolGetPolicyExistingFile) that the opening handle will receive

transparent encrypted/decrypted access. Given the Thread ID of the thread performing the access and the

Solution Header Data that FESF stored with the file, the Solution Policy DLL returns the Key Data and Algorithm ID

to be used for encryption and decryption operations. This callback function is required and must be implemented

by every Solution Policy DLL.

• PolFreeHeader– Called by FESF to return the storage for Solution Header Data that was previously allocated by

the Solution Policy DLL. This callback function is required and must be implemented by every Solution Policy DLL.

• PolFreeKey – Called by FESF to return the storage for the Key Data that was previously allocated by the Solution

Policy DLL. This callback function is required and must be implemented by every Solution Policy DLL.

• PolApproveRename – Called when a file on a supported file system is being renamed. The Solution Policy DLL can

choose to allow or disallow the operation for security purposes. This callback function is optional.

• PolApproveCreateLink – Called when a hard link is being created on a supported file system. The Solution Policy

DLL can choose to allow or disallow the operation for security purposes. This callback function is optional.

• PolApproveTransactedOpen – Called when a new file is being created using CreateFileTransacted or similar. The

Solution Policy DLL can choose to allow or disallow the operation for security purposes. This callback is optional.

• PolGetPolicyDirectoryListing – Called when a directory is opened to determine whether the sizes returned in a

directory listing will reflect what is consumed on disk (including space used for the Solution Header Data and any

metadata that FESF itself stores) or just the size of the data in the file (reflecting the size of the file if it were not

FESF encrypted). This callback function is optional.

• PolReportLastHandleClosed – Called when the last handle to a file in FESF encrypted format is being closed. This

callback function is optional.

• PolGetLockRounding – Called to find the “lock rounding” that should be associated with all accessors to a

(network hosted) file prior to the locking request being sent to the remote server. This callback function is

optional.

• PolUninit – Called during shutdown to allow the Solution Policy DLL to perform any cleanup operations it

requires. This callback function is optional.

Aside from the required functions, a Solution Policy DLL only needs to implement those functions that are relevant to

the Client product.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
2

6.2 FESF Policy Before the Solution Policy DLL Starts
It will be no surprise that during system startup, Windows opens, creates, and renames numerous files. What does

FESF do, in terms of Policy, before the Solution Policy DLL has been started and initialized?

Before the Solution Policy DLL starts, FESF implements secure defaults that will still allow the system to start and get

work done. Access to all volumes and network shares will be monitored by FESF (until the Solution Policy DLL’s

PolAttachVolume callback can be called). During this time, new files will be created raw and any attempt to access an

existing FESF encrypted file will be denied. In addition, rename and hard link operations will be allowed and directory

enumerations will return raw file sizes (that is, the size including the FESF metadata and Solution Header Data)

6.3 Solution Policy DLL Initialization
Every Solution Policy DLL must implement a PolicyDllInit callback function. This is the only Solution Policy DLL callback

function that is called by name.

The purpose of the PolicyDllInit callback function is to perform Solution Policy DLL initialization. This initialization

must include calling FePolSetPolicyConfiguration to select configuration options and provide FESF pointers to the

other callback functions that the Solution Policy DLL supports.

To be able to call FePolSetPolicyConfiguration, the Solution Policy DLL builds an FE2_POLICY_CONFIG structure. This

structure is typically allocated on the stack by the Solution Policy DLL. The structure must be zeroed before use.

Also specified in the FE2_POLICY_CONFIG structure are a list of encryption algorithms and options, and a unique

handle that will be used by the Solution Policy DLL to identify each specific algorithm/option pair.

6.4 Returning Failure from Solution Policy DLL Callbacks
The Solution Policy DLL callbacks PolGetPolicyNewFile, PolGetKeyNewFile, PolGetPolicyExistingFIle, and

PolGetKeyFromHeader can all return failure indications. Solutions should avoid returning failures to these callbacks as

a means of access control. Rather, returning failure from these functions should be reserved only for significant error

conditions.

The reason for this recommendation is that these callbacks are called by FESF after the user has successfully opened

the given file. When the Solution Policy DLL returns an error, the user will receive an error back from what was

otherwise a successful create operation. When that open operation includes a "destructive create" (an open

operation that supersedes or overwrites an existing file) the contents of the existing file have already been deleted. If

the open operation results in a new file being created, that new file has already been created on disk when the

Solution Policy DLL's callback is called.

In these cases, returning an error from one of the previously mentioned functions can result in an empty file being

created on the system. FESF does not attempt to clean up these empty files in any way.

6.5 Guidance for Implementing Callback Functions
Regardless of the design of your Solution, there are four important things we'd like you to keep in mind in terms of

the design and implementation of Solution Policy DLL callbacks. Those four things, in no particular order, are:

• All Solution Policy DLL callback code that you implement must be thread-safe. Fe2Policy uses Windows thread

pools which dynamically grow (and shrink) the pool of worker threads it uses to call Solution Policy DLL callbacks.

A design which takes maximum advantage of the parallelism offered by FESF, and an efficient, scalable, locking

scheme where access to shared data is required, are a must in your Solution.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
3

• Callbacks to your Solution Policy DLL must complete "promptly." Remember, when Fe2Policy calls your Solution

Policy DLL it's blocking a kernel-mode operation, typically a user's request to open or create a file. For the

Solution and the overall Windows system on which the Solution is running to exhibit good performance, prompt

and efficient processing is a must. A Solution architecture that judiciously caches information, including Policy

decisions, key material, and user Security Group membership, is strongly advised. While we're not fans of

premature optimization, we would encourage you to at least take these precepts into account as part of your

Solution's initial design.

You might reasonably ask "What time period, precisely, does 'promptly' imply?" Unfortunately, we don't have a

good answer for you. By promptly, we really mean "as soon as practically possible for your Solution." Each

workload will be different, and your Solution has to meet your own design and usability goals. However, from a

systems perspective, we would advise targeting a small number of seconds (in the low single digits) as the

maximum time for a Solution Policy DLL callback to complete under heavy system load. This should yield

acceptable performance. This is provided only as a guideline to aid you in your design.

One absolute maximum that we can warn you about is that used by the FESF Kernel Mode Components. These

components set an arbitrary maximum of 30 seconds that they will wait for a reply from user-mode. One of our

developers describes this interval as "a virtual eternity", and indeed it is the uppermost bound that can be

expected for a reply even on a severely degraded system. After this period of time, an error message is logged to

the Windows Event Log and the timed-out operation is completed with an error (access denied). While this will

ensure the system remains running, returning errors from a Solution Policy DLL callback is rarely desirable, as

further described below.

• Returning failure codes only when unrecoverable errors occur. As described in the section above entitled

Returning Failure from Solution Policy DLL Callbacks, returning a failure code from the PolGetPolicyNewFile,

PolGetKeyNewFile, PolGetPolicyExistingFIle, and PolGetKeyFromHeader Solution Policy DLL callbacks can have

unexpected side-effects. We would advise you to restrict failure returns to those conditions which are

unforeseeable and catastrophic. We would recommend not returning failure statuses to FESF callbacks in

transient conditions such as lost connections or slow responses from your key management server. Obviously,

only you understand your Solution and its requirements. But, at the very least, please do not consider returning

an error from these callbacks as an alternative way of implementing file access security.

• Be conscious of the potential for reentrancy from your Solution and avoid it. Bear in mind that your Solution

Policy DLL's callbacks are executing while a Windows system service (typically a CreateFile operation) is pending.

This means you must avoid the potential for reentrancy problems. As a very simple example, consider what might

happen if you create a new file as a result of being called in your PolGetPolicyNewFile callback. In this example,

assuming your policy determinations are made in a separate process (similar to the way the OSR Sample Solution

works) your PolGetPolicyNewFile callback would get called-back endlessly (each time, creating a new file which

then results in another callback). Not good!

To preserve FESF integrity (and to eliminate the most obvious potential causes of endless callbacks), FESF kernel-

mode code suppresses all Solution Policy DLL calls for I/O operations that are performed within the context of the

FESF Policy Service itself. So, in the above example, creating a new file directly within the Solution Policy DLL’s

PolGetPolicyNewFile callback (and not in a separate process) would NOT actually generate a reentrant call to

PolGetPolicyNewFile.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
4

6.6 Guidance Regarding Solution Policy DLL Solution Header Data
When a Solution Policy DLL determines that a newly created file should be encrypted, FESF subsequently calls the

Solution Policy DLL’s PolGetKeyNewFile. In response to this callback the Solution Policy DLL returns encryption key

information, as well as an initial copy of Solution Policy DLL defined Solution Header Data for FESF to store with the

newly created file.

The Solution Policy DLL defined Solution Header Data may contain any data the Solution may require to derive the

encryption key information for the file on subsequent accesses.

While Solution Header Data can be any size up to FE_MAX_SOLUTION_HEADER_SIZE (which is currently 1MB), the

Solution Policy DLL must correctly fill-in the MaxHeaderSize value in the FE2_POLICY_CONFIG. The Solution Policy DLL

must set this field to (at least) the largest Solution Header size in bytes that the Solution will exchange, in either

direction, with Fe2Policy. This parameter is used by FESF to size pre-allocated buffers for communication between

components.

Oversizing the MaxHeaderSize field will result in wasting pre-allocated memory on machines where FESF is installed.

If FESF V2 encounters a Solution Header that is larger than the value supplied by MaxHeaderSize, runtime errors and

unpredictable application behavior will occur.

It is important to understand that MaxHeaderSize is a run time parameter used for communication by FESF. It is not

stored in FESF encrypted files nor is it used to size on disk structures. This means that a given version of a Solution can

set MaxHeaderSize to one value, but if a later version of the Solution uses a larger header size MaxHeaderSize can be

changed without any complications or compatibility issues with previous versions.

Finally, please note that the only supported method for a Solution to retrieve or update the Solution Header Data

stored with an FESF encrypted file is by using documented functions, such as those supplied by FesfUtil2 (while FESF is

installed) or Fe2Sa (when FESF is not running on the system) and described later in this document.

6.7 Working with Local, Network, and Shadow Volume File Paths
File paths and other associated open information are expressed to the Solution Policy DLL via an

FE_POLICY_PATH_INFORMATION structure. This structure is used to describe both local file paths as well as network

file paths.

In the case of a local file path, the volume GUID of the local volume is supplied along with the volume relative path to

the file. The Solution Policy DLL may use the volume GUID to look up a “friendly name” for the volume, such as a drive

letter or mount points, using standard Windows APIs. The Solution Policy DLL may also call the FESF Utility function

FesfUtil2GetFullyQualifiedPath, which will attempt to convert the volume GUID into a friendly name and concatenate

the supplied relative path. You can read more about volume GUIDs, drive letters, and mount points by consulting the

MSDN documentation.

If the volume GUID supplied is FE_NETWORK_GUID, the path supplied represents a file located on a network share.

Network shares do not have volume GUIDs and thus this GUID is meaningful only within the bounds of the FESF

Solution Policy DLL interface and as input to the FesfUtil2 function FesfUtil2GetFullyQualifiedPath. The server and

share are supplied along with the share relative path to the file.

Network paths have some potentially unexpected behaviors that warrant additional discussion. Of particular note is

the fact that FESF components make no attempt to normalize or rationalize the server component of the UNC path.

For example, let’s assume that there is a server named EmployeeFiles in the FESFTest domain with two IP addresses

10.0.0.10 and 10.0.0.11. A user might access a file on this server using any one of these paths:

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
5

• \\EmployeeFiles\Records\Doe.docx

• \\EmployeeFiles.FESFTest.com\Records\Doe.docx

• \\10.0.0.10\Records\Doe.docx

• \\10.0.0.11\Records\Doe.docx

In each of these cases, the Solution Policy DLL will see the server name as specified by the requestor. Thus, if the

Solution is using a strict path-based approach to determining policy, these paths may appear to represent different

files located on different servers. If the Solution requires a unique canonical name to represent the server, the

Solution Policy DLL must extract the server component of the supplied server and share information and use an

external source to resolve the name.

Another interesting case is when the user accesses a network share via a drive letter mapping. For example, a user

may map their Z: drive to the \\EmployeeFiles\Records share. If the user then accesses Z:\Doe.docx, the Solution

Policy DLL will not see the drive letter based path in its callbacks. As stated previously, FESF always passes the

Solution Policy DLL a standard UNC path, even if the file access was made via a drive letter mapping. Note that the

server component of the path is still subject to the ambiguity specified above, but in this case it is dependent on the

server name format used when the drive letter mapping was created.

Finally, please note that like network paths, FESF does not attempt to do normalization of hard links. Thus, a given file

can have numerous hard links that point to it. Unless you’re aware of this, you may at times get unexpected results,

including result values from a function such as FesfUtil2GetExecutablePathForThreadId.

If the volume GUID supplied is FE_SHADOW_VOLUME_GUID, the path supplied represents a file located on a local

shadow volume. Shadow volumes do not have volume GUIDs and thus this GUID is meaningful only within the bounds

of the FESF Solution Policy DLL interface and as input to the FesfUtil2 function FesfUtil2GetFullyQualifiedPath. Paths

to files on shadow volumes carry the shadow volume “device name”. This can be used as input to find out more about

the shadow volume. For instance, the VSS APIs provide such support. A file on a shadow volume can be opened by

constructing a UNC file name by appending the file name to the shadow volume device name and prepending the

while with \\?\GlobalRoot\

Thus:

\\?\GlobalRoot\device\HarddiskVolumeShadowCopy9\dir\file

6.8 A Note About Raw File Access
As previously described, FESF encrypted files are stored using an On Disk Structure (ODS) that is proprietary to FESF

and subject to change in subsequent FESF releases. Remember that the only supported mechanism for retrieving and

updating the Solution Policy DLL supplied Solution Header Data is via documented FESF functions (such as

FesfUtil2ReadHeaderExclusive and FesfUItil2UpdateHeaderExclusive).

It is a serious architectural violation for a Solution Component to bypass the supported FESF functions and instead use

raw access to manually update (or attempt to interpret) any portion of the FESF ODS, including the Solution Header

Data. Thus, if you write code that accesses, reads, interprets or changes the stored FESF metadata or Solution Policy

DLL supplied Solution Header Data in any way other than using the documented FESF functions, you’re doing this

against our recommendations, and you are on your own. Consider that FESF may have header data for a given file

cached in kernel-mode at any time. Also, note that OSR reserves the right to change the FESF On Disk Structure at any

time, for any reason or for no reason, with or without notice.

Finally, because when we talk about encrypting files we’re usually dealing with security, it’s useful to keep in mind the

fact that any application that has write access to a file can change all or part of the that file’s contents. This applies

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
6

equally to FESF encrypted files as it does to ordinary unencrypted files. When an application is given raw write access

to an FESF encrypted file, that application could potentially overwrite or otherwise damage the file. Again, this is no

different than any file on Windows that relies on a specific file format, whether that’s an executable image, a

database file, or a Word document.

6.9 Installing and Using Fe2Policy

6.9.1 Installation, Removal, and Specifying Your Solution Policy DLL location
The Fe2Policy service is self-installing. This is the only supported method of installing the Fe2Policy service. To install

Fe2Policy, use the command:

Fe2Policy --install [logging options] <fully qualified path to your Solution Policy DLL>

Note that the “install” option must be preceded by two dashes.

As part of installing Fe2Policy, you specify the fully qualified path to your Solution Policy DLL. Your Solution Policy DLL

forms a critical part of the FESF security infrastructure. Be sure you locate it securely in a directory that is protected

from unauthorized access. It would be a security vulnerability if a bad actor created an alternate Solution Policy DLL

with the same name as yours and got Fe2Policy to load it.

You may optionally add logging options to Fe2Policy’s install command line to specify the Windows Event Log logging

level and/or on disk log location and level, as described later in this document.

Fe2Policy installs itself to start at “auto-start” time. Fe2Policy is also set to automatically re-start itself if it exits for

any reason other than an ordered stop or shutdown. Installing Fe2Policy does not start it. The system must be

rebooted to properly start Fe2Policy.

Fe2Policy can be un-installed using the standard Windows SC command, such as:

sc.exe delete Fe2Policy

This un-installs the Fe2Policy service, deleting its entries from the Registry, but does not delete the Fe2Policy

executable associated with the service.

6.9.2 Fe2Policy Logging Options
Fe2Policy logs messages to the Windows Event Log. These messages can be seen in the Windows Event Viewer under

“Windows Logs”, “Applications” (see Figure 1). By default, Fe2Policy will log messages related to its state (startup,

shutdown, etc.) and any errors that it encounters.

The level (verbosity) of the messages that are written to the event log can be specified using the “-e=<level>”

Fe2Policy option, where <level> is “i”, “w”, or “e” to log “informational”, “warning”, and “error” events respectively.

Lower levels include higher levels, thus specifying “-e=i” will result in information, warning, and error events from

Fe2Policy to be written to the Windows Event Log.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
7

Figure 2 - Windows Event Log for Fe2Policy

In addition to writing events to the event log, Fe2Policy can optionally log information to its own on-disk log. This

allows you to collect detailed log information for debugging or diagnostic purposes, without cluttering the Windows

event log.

To specify on-disk logging, you use the Fe2Policy options “-f=<log file path> -l=<level>”, where <log file path> is the

fully qualified path where Fe2Policy should write its log, and <level> indicates the level (verbosity) of the messages

written to the on-disk log. Note that Fe2Policy automatically rotates logs when they reach about 512MB in size. This

size is not configurable. An example of the Fe2Policy log output is shown in Figure 3.

Figure 3 - Fe2Policy Informational Level Log Output

Note that the event messages that are written by Fe2Policy to the Windows Event Log and its on-disk log are the

same. So, for example, if you choose to log “error” level messages to the Windows Event Log (with the option -e=e)

and “warning” level messages to the Fe2Policy private on-disk log (using the -l=w option), the Fe2Policy on disk log

will contain all the “error” level messages that Fe2Policy has written to the Windows Event Log as well as any

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
8

“warning” level messages (that are not written to the Windows Event Log). Finally, be aware that the logging data

that is output at the informational level is quite granular, and much of it might only be of use to OSR or to source

code licensees.

Fe2Policy Option Summary

Option Short Form Option Long Form Meaning

-l=<t|i|w|e> --logging=<t|i|w|e> File logging output level, one of:
t(race), i(nfo), w(arning), e(rror)

-f=<log-file-path> --file=<log-file-path> Logs file logging messages to
specified file. If no level specified
defaults to “-l=e”

-e=<i|w|e> --eventlog=<i|w|e> Windows event log output level, one
of: i(nfo), w(arning), e(rror). If not
specified, defaults to “-e=e”

(none)

--install Installs the service (MUST specify
path to default Solution Policy DLL)

6.9.3 Updating Fe2Policy Solution Policy DLL Path or Logging Options
After installing Fe2Policy, there are two ways to update the Logging Options or the path to your Solution Policy DLL:

1. Uninstall the Fe2Policy Service (“sc.exe delete Fe2Policy”) and then re-install Fe2Policy again using the self-

install feature described previously. This is the only supported method, because it validates the logging

options and Solution Policy DLL location and makes the entries in the Windows Registry in the proper format.

2. Directly edit the Fe2Policy Registry entries. For your reference, we describe the Registry entries used by

Fe2Policy later in this document. However, be aware that getting the syntax of those entries correct

(especially when there are spaces in the path to Fe2Policy or your Solution Policy DLL) can be tricky. If you

must edit the Registry entries, be careful when doing so, and bear in mind that this is not supported by OSR.

We recommend that if you need to update the Solution Policy DLL, its location, or the Fe2Policy logging options that

you stop Fe2Policy, uninstall it using the Windows SC command, make your changes using Fe2Policy’s self-install

feature, and then reboot the system for the new changes to take effect.

While you can simply restart the Fe2Policy service (“sc start Fe2Policy”) you’ll need to be aware of three things:

• You must stop and restart the FESF Policy Service (Fe2Policy.exe) for the new Solution Policy DLL to be loaded

or any changes to the selected options to be recognized. The FESF Policy Service only loads the Solution

Policy DLL and evaluates options during initialization.

• Be aware that although you’ve restarted Fe2Policy, the FESF kernel-mode components (and Windows) will

have “state” that is maintained and is not reset as a result of the FESF Policy Service being restarted. This

means, for example, that volumes that been previously presented to your Solution Policy DLL via the

PolAttachVolume callback will not be presented to your Solution Policy DLL again. Similarly, any files that

were encrypted by FESF by previous instances of the Solution Policy DLL will be recognized as encrypted files

by FESF. Your Solution Policy DLL may, therefore, be called at PolGetKeyFromHeader with Solution Header

Data that was created by a previous Solution Policy DLL. It is therefore wise to include some identifying

information in the Solution Header Data so that your Solution Policy DLL can validate and recognize the

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e2
9

header before using its contents.

• The configuration parameters provided by your Solution Policy DLL via the FE2_POLICY_CONFIG structure

must be identical each time you start Fe2Policy, unless the system has been rebooted. For example, you

cannot stop Fe2Policy, update your Solution Policy DLL to support an additional crypto algorithm, and then

restart Fe2Policy. In this case, Fe2Policy will fail with STATUS_DLL_INIT_FAILED and an error reflecting this

will be logged to the Windows Event Log. To continue the example, to add support for an additional crypto

algorithm you would stop Fe2Policy, change your Solution Policy DLL to add the new crypto support, and

then reboot the system.

6.9.4 Fe2Policy Registry Entries
While we strongly recommend that you change Fe2Policy options using Fe2Policy’s self-install feature as described

previously, for your reference the FESF Policy Service uses the Registry values described in this section.

6.9.4.1 Fe2Policy Options
Policy options used by the FESF Policy Service can be specified in the ImagePath value in the Fe2Policy Service entry:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Fe2Policy

 Value Name: ImagePath

 Value Type: REG_SZ

 Value: <Fully qualified path to Fe2Policy><any options>

For example:

Figure 4 -- Fe2Policy ImagePath with Options

In the above screen capture, the ImagePath value in the registry specified the fully qualified path to the Fe2Policy

executable (C:\fesf\Fe2Policy.exe) and requests that error messages be logged to the Windows Event Log (-e=e) and

that informational, warning, and error messages be written to a file (-l=I, -f=c:\CryptoLogs\fe2log.log).

6.9.4.2 Solution Policy DLL
Fe2Policy stores the fully qualified path to your Solution Policy DLL in the following registry value:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Fe2Policy\Parameters

 Value Name: PolicyDll

 Value Type: REG_SZ

 Value: <Fully qualified path to the Solution Policy DLL>

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
0

To avoid potential security vulnerabilities, it is important to always specify the fully qualified path to your Solution

Policy DLL, and to locate your Solution Policy DLL in a directory that is protected by Windows Access Control Lists

from unauthorized access.

6.9.5 Using Fe2Policy for Debugging
For the purpose of debugging your Solution (particularly, your Solution Policy DLL), Fe2Policy can be run from the

command line instead of as a service. You can accomplish this by stopping the Fe2Policy service and starting Fe2Policy

from the command line with no arguments. Alternatively, you can start Fe2Policy from the command line and specify

the fully qualified path to an alternate Solution Policy DLL.

When you run Fe2Policy from the command line, it displays “information” level and higher logging output in the

terminal window. Every call to the Solution Policy DLL is logged (except for calls to PolGetPolicyDirectoryListing, which

are too numerous to log usefully). This terminal windows output is produced in addition to any logging that you

specify should be sent to the Windows Event Log or a Fe2TraceLog.

An example of Fe2Policy logging output is shown in Figure 5.

Figure 5 -- Running Fe2Policy From the Command Line

6.10 FESF Kernel Component Logging and Tracing
FESF V2 logs various events to the Windows Event Log. While FESF generally avoids logging routine information to the

Event Log, it does log each time Fe2Policy connects to the kernel-mode FESF driver. This allows you (and your users)

to know when FESF is successfully started and ready for work. FESF also logs any serious errors to the Windows Event

Log.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
1

Unless you have an FESF Source License, the name of the logging provider is not customizable. Because licensees may

customize the names of the FESF components when they integrated them into their Solutions, FESF uses the name

“FileEncryption” as the source of its messages in the kernel event log.

Figure 6—Log entry from FESF Kernel Mode Components. Note the source name “FileEncryption” (not FESF)

FESF V2 includes a low overhead event tracing capability based on Event Tracing for Windows (ETW). Tracing facilities

are present in both the debug and release builds of the FESF kernel-mode components but are not active until they

are enabled. This tracing capability is designed exclusively for OSR’s use in diagnosing problems in the field. The low

overhead nature of the tracing capability allows it to be enabled while reproducing a problem, even on end-user

systems, with little noticeable performance impact.

When necessary, OSR will request that you enable tracing, reproduce the problem, stop tracing, and then send the

collected trace file to OSR. Trace files are stored in a binary format to make them space efficient. Please do not

collect a trace file unless specifically requested by OSR.

Trace sessions can be controlled using the logman utility which is available by default on all Windows systems.

To create and start a trace session, open an administrator command prompt windows and use a command such as

the following (or an alternative, if specifically requested by the OSR):

logman create trace FE2 -p {E8887935-6D20-4A4E-B287-B28D3D8F4F7B} 1 255 -bs 64 -ets

After the above command has been successfully run, reproduce the problem. Problems should always be reproduced

on systems that are as idle as possible (in terms of file system activity) while the problem is being reproduced. This is

critical to allowing the OSR engineering team to identify the specific issue.

After the problem has been reproduced, stop the trace session with a command similar to the following:

logman stop FE2 -ets

The above commands will create a file named FE2.etl (located in the directory from which logman was run to create

the trace). Note that the trace output file is a binary file. Please send this file to OSR to aid in diagnosis.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
2

7 Building FESF From Source
OSR supports building FESF V2 using Visual Studio 2022 V17.14. OSR does not support building any of the FESF

components using any other tools or versions of Visual Studio, including Visual Studio 2019.

The layout of the FESF V2 source directory is as follows:

\src The top level source code directory for FESF; Contains no files

 \customize Contains FE2_Customize.h (for customizing Fe2Policy)

 \ inc Headers shared between FESF user and kernel mode components

 \kernel FESF canonical kernel mode components

 \shared Shared source code between FESF user and kernel mode components

 \user FESF canonical and sample user mode components

 \Fe2User The FESF canonical user-mode components

 \Unsupported_Sample The source code for the FESF Sample Solution

 \inc.user User mode common include files

 \lib.user User mode common library files

7.1 FESF Canonical User-Mode Components
The source code for the FESF V2 canonical user-mode components (the ones shown as orange rectangles in Figure 1)

can be found in the directories rooted at

 \src\user\Fe2User

You will find source code and projects for building Fe2Policy and the FesfUtil2 libraries (both static and dynamic). You

must build all of these components successfully before attempting to build any of the FESF Sample Solution

components.

Sources in these directories may reference and/or produce output files in the user-mode common directories:

 \src\user\inc.user

 \src\user\lib.user

Sources in these directories may also reference files in the FESF shared kernel/user directory:

 \src\inc

The user-mode components can be built using the single Visual Studio Solution file:

 \src\user\Fe2User\Fe2User.sln

The sources build without warnings or errors and pass Code Analysis as supplied.

7.2 FESF Sample Solution Components
Note that the Sample Solution Components are dependent on the FESF canonical user-mode components. Therefore,

you must successfully build the FESF canonical user-mode components before you can successfully build the FESF

Sample Solution components.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
3

The Fe2SaCrypt sample cannot be successfully built without binaries and headers for the SymCrypt library. SymCrypt

is available on GitHub as both source code and pre-built binaries.

The sample installer, as provided, cannot be successfully built without binaries for the FESF Kernel Mode components.

You can copy the released version of the required components to the required directories (see the sample installer)

before building the sample installer.

The source code for the FESF V2 Sample Solution can be found in the directories rooted at

 \src\user\Unsupported_Sample

You will find source code and projects for building all the components of the FESF Sample Solution. Also, note that

OSR supplies an installer that will install the FESF canonical components and the sample solution. That installer is

located in:

 \src\user\Unsupported_Sample\Installer

You may use this installer as a guide for creating an installer for your product, as it demonstrates the proper (and only

supported) method for installing FESF kernel-mode and user-mode components.

The Sample Solution sources may reference files in the Sample Sources shared directory:

 \src\user\Unsupported_Sample\inc

The Sample Solution source code may also reference files in the user-mode common directories:

 \src\user\inc.user

 \src\users\lib.user

They may also reference files in the FESF shared kernel/user directory:

 \src\inc

The Sample Solution components can be built using the single Visual Studio Solution file:

 \src\user\Unsupported_Sample\Sample.sln

This Solution builds the Sample Solution components including the FesfSaCrypt utility and the Sample Installer

(neither of which will build successfully as provided, without manually adding the required components described

above).

The sources build without warnings or errors and pass Code Analysis as supplied.

7.3 FESF Kernel Mode Components
FESF kernel mode components can be built by licensees with FESF V2 source code licenses using the FESFV2 Solution

located in the src\kernel\ directory. Recall that, absent a custom agreement, an FESF source license does not include

support by OSR for modifying any FESF kernel mode components. Assistance in understanding the FESF kernel mode

components, or in designing or implementing custom changes to the FESF kernel mode components, is available only

with an additional, custom, engagement with OSR.

https://github.com/microsoft/SymCrypt
https://github.com/microsoft/SymCrypt/releases

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
4

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
5

8 Notes on Installing FESF with Your Solution
Please see the src\user\Unsupported_Sample\Installer project (part of the Sample Solution) for an illustration on how

to install the FESF Components and other components. This installation process uses OSR supported procedures.

Note that the two kernel-mode components, FesfV2.sys and Fe2Lower.sys, must be started at System Start time. This

is a change from FESF V1. Also, please be aware that OSR does not support changing or installing the kernel-mode

components without rebooting the system after the kernel-mode components have been installed. That is, it is not

permissible to stop Fe2Policy and unload the kernel-mode components, and then reload the kernel-mode

components and restart Fe2Policy. The system must be rebooted after the kernel-mode components have been

stopped.

8.1 About the Sample Installer Project
As mentioned previously, OSR provides an unsupported sample project that builds an MSI file that installs both the

FESF Canonical components and the Unsupported Sample Solution. We provide this project because over the years

FESF licensees have frequently asked us for an example way to install various FESF components. The sample

installation executable is built using the WiX toolset. Our use of Wix is essentially arbitrary and is absolutely not

required for the installation of the FESF Canonical components.

This project, along with the INF files provided with the drivers, does illustrate the correct, supported, way to install

the FESF components. These are shown in the batch file “InstallFesfV2.bat” in the sample installer project.

Specifically, the supported steps for installing FESF are:

• The FESF V2 drivers, Fe2Lower.sys and FesfV2.sys must be installed using their INF files. We recommend that

you use the INFs to install the drivers via a procedure like the following (from “installFesfV2.bat”):

RUNDLL32.EXE SETUPAPI.DLL,InstallHinfSection DefaultInstall 128 .\Fe2Lower\Fe2Lower.inf

RUNDLL32.EXE SETUPAPI.DLL,InstallHinfSection DefaultInstall 128 .\FesfV2\FesfV2.inf

• You *must* set the “enableecp” property for the LanmanServer (Windows networking) component, to

enable FESF to properly detect network volumes. Specifically:

REG_DWORD SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\enableecp

Must be set to the REG_DWORD value of “1”

• Fe2Policy must be installed using its self-install capability (“Fe2Policy –install <your-policy-dll> <options>”).

For example (again from “installFesfV2.bat”):

Fe2Policy.exe --install -e=e Samppolicy.dll

• After the drivers or Fe2Policy has been updated, the system must be rebooted.

8.2 About Customizing FESF Component Names
Note that licensees may customize the names of any or all of the FESF components. The service name for Fe2Policy

needs to be changed by specifying the new name in the file src\Customize\FE2_Customize.h and also the “Target

Name” parameter in the Fe2Policy Project’s configuration. If you change the name of Fe2Policy, remember to rebuild

your Solution Policy DLL after building the newly named Fe2Policy.

https://github.com/wixtoolset

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
6

Drivers may be renamed in any manner that is convenient. Note that any changes you make to driver names or the

INF file will render the OSR-applied signatures invalid.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
7

9 FESF Known Restrictions and Limitations
For information related to the most recent versions of FESF, please refer to the Release Notes for:

- Currently supported versions of Windows

- Versions of Visual Studio and WDK that may currently be used by FESF

The restrictions and limitations below are permanent, documented, restrictions or limitations related to supported

FESF V2 behavior.

• 32-Bit Windows Systems

FESF does not support any 32-bit Windows systems and does not provide or support a 32-bit version of the

FESF Utility Library FesfUtil2.

• Supported File Systems

FESF supports encrypting files on NTFS, REFS, FAT32, ExFAT (both locally and on the network). FESF does not

support encrypting or decrypting FESF files on UDF or CDFS, any non-Microsoft file systems, or on network

shares not hosted by SMB running a version of Windows that is currently covered by Microsoft’s Modern Life

Cycle for the General Availability Channel or Mainstream Support for the Long-Term Servicing Channel (for

Enterprise LTSC/LTSB versions only).

• Only Windows-Hosted SMB Shares Are Supported

Only network volumes shared from Windows systems (clients or servers) via SMB are supported. Non-SMB

protocols such as HGFS (used to share between a VMWare client and its host) or RDPR (used to share

between a Remote Desktop and the machine it’s being accessed from) are explicitly ignored and no

encryption will take place on them.

• Concurrent Support for NTFS Compression or Encryption

FESF encryption does not support NTFS compression or encryption for FESF encrypted files. If an FESF file is

properly encrypted, the data will be statistically random. The file, therefore, will not benefit from

compression. Also, if the file is already encrypted by FESF, it will not benefit from further encryption.

Note that files that are NOT FESF encrypted can be successfully compressed or encrypted by NTFS. However,

these files cannot subsequently be successfully encrypted by FESF without reversing the NTFS compression or

encryption.

FESF not supporting files with NTFS encryption or compression is not an FESF defect but is rather by design.

• Client-Side Caching (CSC)

Client-Side Caching (also known as Offline Files) is a legacy feature on Windows. While not officially

deprecated by Microsoft at this time, it is in maintenance only mode and not recommended for use in favor

of One Drive, Work Folders, or Cloud-Base Profiles.

While non-encrypted files may work with Client-Side Caching in FESF V2, FESF does not officially support

Client-Side Caching (CSC).

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
8

• Interactions with LUAFV

In modern versions of Windows, the behavior of Microsoft’s LUAFV filter has been significantly restricted.

Even in supported scenarios, LUAFV redirection has always applied to only 32-bit applications that are not

run as administrator. It is well known that ordinary operation of many antivirus filters will cause legacy 32-bit

applications attempting to write to either of the “Program Files” directories or certain subdirectories of

“Windows” to fail. In fact, even without any non-Microsoft antivirus filters installed, OSR’s testing indicates

that writes to protected directories fail by default in Windows 11.

We expect legacy 32-bit applications that attempt to create files in any of the virtualized directories to not be

affected by FESF V2. As noted above, in recent versions of Windows 11 these operations fail with or without

FESF installed. Regardless, just like typical antivirus filters, FESF does not officially support LUAFV redirection.

• Interactions with Antivirus (and other file system filter) Products

FESF has been successfully tested with many of the most common antivirus (AV), disaster recovery, and

desktop virtualization products. Interoperability testing is an ongoing process for FESF. Nevertheless,

licensees should expect that end users who have products that use file system filters will need to make these

products aware of the both canonical FESF and Solution-specific components. We know this to be particularly

true of antivirus products.

As an example of the configuration that should be expected, AV products should be configured to exclude the

FE2Policy service (as well as the FESFV2 and FE2LOWER Minifilters, if applicable) from any virus scanning or

other processing. In addition, you may need to exclude any of your Solution’s components of services from

AV processing.

The requirement to configure the behavior of AV products does not reflect a bug or poor design of either the

AV product or FESF. Rather, it is inherent in the way services and file system Minifilters interoperate.

Excluding FESF components and your product’s Solution components from AV processing should present

minimal security threats to customer environments. Of course, every environment is different and requires

unique analysis.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e3
9

10 Solution Policy DLL Callback Function Reference
The functions described in this section are prototypes for callbacks that may be implemented by the Solution Policy

DLL. Some of these callbacks are required, others are optional. The status of each function is noted in that function's

description.

10.1 About Implementing Your Callback DLL
This section provides hints and tips for implementing your Solution Policy DLL callback functions.

10.1.1 Regarding SAL Annotations
If you look at Fe2PolDllApi.h, where the FESF Solution Policy DLL structures and callback functions are all defined,

you'll almost certainly notice that the function prototypes for the callback functions are filled with what might look to

you to be strange notes. For example:

Success(return == true)

FESFAPI
POL_GET_KEY_NEW_FILE_EX(
 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,
 In DWORD ThreadId,
 In PVOID context,
 _Outptr_result_bytebuffer_(*PolHeaderDataSize) PVOID *PolHeaderData,
 Out _Deref_out_range_(> , 0) DWORD *PolHeaderDataSize,
 _Outptr_result_z_ LPCWSTR *PolUniqueAlgorithmId,
 _Outptr_result_bytebuffer_(*PolKeySize) PVOID *PolKey,
 Out _Deref_out_range_(> , 0) DWORD *PolKeySize,
 _Outptr_result_maybenull_ PVOID *PolCleanupInfo
);

All the weird stuff that doesn't look like C++ are "annotations" in Microsoft Source-code Annotation Language (SAL).

These annotations describe to the compiler and to Visual Studio Code Analysis how the various parameters of a

function are to be used. We're big fans of SAL Annotations here at OSR because they've helped us find and prevent

more bugs to date than we could ever count. You can read a bit about SAL Annotations in our blog post:

http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-beautiful/

How do these annotations affect you? Well, mostly, they won't. Except that if you enable Visual Studio Code Analysis

you'll be able to find problems with how you're implementing your Solution Policy DLL callbacks more quickly.

There is one interesting issue that you'll encounter during implementation, however. And that issue is that you will

almost certainly not want to duplicate all the SAL Annotations when you declare or define your callback function. In

other words, when you write the code that implements POL_GET_KEY_NEW_FILE, you probably won't want to have

to include the SAL for each of your parameters. And, fortunately, that's easy to avoid.

When declaring a callback function in your Solution Policy DLL's header file, we recommend that you use the type

definition that we provide in the first line of the Syntax section of the documentation. The location of the type

definition is shown in Figure 3.

In your implementation file, when you define the code for your callback function, we suggest that you use the single

annotation _Use_decl_annotations_. This will avoid you having to duplicate the annotations, and leave your source

code clean and easy to read.

We've provided an example of this approach below.

http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-beautiful/

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
0

Figure 6 – Type Definition Example

If you're implementing the PolGetKeyNewFile callback, you'd declare your function in your header file like this:

POL_GET_KEY_NEW_FILE MyPolicyDllGetNewFileKey;

And in your implementation file, where you define your function, your code would look like this (note the use of

_Use_decl_annotations_ has been highlighted):

_Use_decl_annotations_

bool MyPolicyDllGetNewFileKey(

 FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 DWORD ThreadId,

 PVOID *PolHeaderData,

 DWORD *PolHeaderDataSize,

 LPCWSTR *PolUniqueAlgorithmId,

 PVOID *PolKey,

 DWORD *PolKeySize,

 PVOID *PolCleanupInfo)

{

 //

 // Get the fully qualified executable path

 //

 CComBSTR exePath;

 HRESULT hr = g_pFesfUtil->GetExecutablePathForThreadId(ThreadId, &exePath);

 if (FAILED(hr))

 {

 return false;

 }

 // ... and the rest of your function goes here...

Combining the use of the Type Definition and _Use_decl_annotations_ will get you all the benefits of using SAL

Annotations for your callbacks, without having to look at any of the ugly annotation text.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
1

PolicyDllInit callback function
A Solution Policy DLL's PolicyDllInit callback function is the first Solution Policy DLL function called by FESF. A Solution

Policy DLL is responsible for performing initialization in this function.

Syntax

bool

PolicyDllInit(

 VOID

)

Parameters

(none)

Return value

If PolicyDllInit succeeds, it returns TRUE. Otherwise, it returns FALSE.

Returning FALSE will result in FESF not calling any further functions in the Solution Policy DLL.

Remarks

All Solution Policy DLLs must implement this callback function. If this callback function is not implemented, the state

and operation of FESF will be undefined. This callback must be named PolicyDllInit and is the only Solution Policy DLL

callback that the FESF Policy Service locates by name.

A Solution Policy DLL's PolicyDllInit callback function is called by FESF to allow the Solution Policy DLL to perform

initialization. The Solution Policy DLL first performs any internal initialization it may require and then must call

FePolSetConfiguration.

In terms of FESF, the primary operation performed by the Solution Policy DLL within PolicyDllInit is to build an

FE2_POLICY_CONFIG structure and pass a pointer to this structure to FESF by calling FePolSetConfiguration. The

FE2_POLICY_CONFIG structure contains the following information:

• The version of the FE Policy Interface that the Solution Policy DLL supports.

• Whether FESF Policy Caching should be enabled by default (changeable at runtime).

• The maximum size (in bytes) of the Solution Header that the Solution Policy DLL supports.

• A list of one or more crypto algorithms, along with a unique string (the Algorithm ID) that will be used by the

Solution Policy DLL to refer to each.

• Pointers to the Policy callback functions that are implemented by the Solution Policy DLL.

As soon as FePolSetConfiguration has been called, FESF will begin calling callbacks in the Solution Policy DLL.

To enable clean-up operations FESF will call the Solution Policy DLL's PolUnInit callback function during shutdown.

Note that PolUnInit is called through the pointer provided in the FE2_POLICY_CONFIG structure and is not located by

name.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
2

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
3

PolApproveCreateLink callback function
A Solution Policy DLL's PolApproveCreateLink callback function is called to allow the Solution Policy DLL to approve or

reject the creation of a hard link on a supported file system.

Syntax

POL_APPROVE_CREATE_LINK PolApproveCreateLink;

bool

PolApproveCreateLink(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In FE_POLICY_PATH_INFORMATION *LinkPolicyPathInfo

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the name of the file to

which the hard link is being created.

If FESF has determined that the source file is in a “bypass” region, then the FE_POLICY_PATH_NAME_BYPASS

flag will be set. A bypass region is one in which file opens are always raw (because of interoperability issues).

If the requested rename is to replace an existing file (if one exists) then the

FE_POLICY_PATH_REPLACE_IF_EXISTS flag is set.

ThreadId [in]

The identifier of the thread attempting to create the hard link.

LinkPolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the proposed new hard

link name.

Note that if Windows has not been able to supply the new name then the

FE_POLICY_PATH_TARGET_NAME_INVALID flag will be set and the RelativePath will be invalid.

This is often provoked by creating a link “through” a directory symbolic link to a network Share.

If FESF has determined that the new name will be in a “bypass” region then the

FE_POLICY_PATH_NAME_BYPASS flag will be set. A bypass region is one in which file opens are always raw

(because of interoperability issues).

Return value

To approve the creation of the hard link, the PolApproveCreateLink callback function returns TRUE. Otherwise, it

returns FALSE.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
4

If FALSE is returned, FESF will fail the thread's CreateHardLink operation. How the requesting thread/process reacts

to having this error returned is dependent on the thread/process.

Remarks

A Solution Policy DLL's PolApproveCreateLink callback function is called by FESF to allow the Solution Policy DLL to

approve or reject the creation of a hard link on a supported file system.

Implementation of this callback function is optional for a Solution Policy DLL. If this function is not implemented, FESF

allows the proposed hard link to be created.

Solution developers should be VERY cautious about returning FALSE from this callback as a result of what should be

non-fatal errors. For example, if you return FALSE (thereby disallowing the requested hard link operation) as a result

of a function such as GetExecutablePathForThreadId or GetSidForThreadId failing due to a system protection issue,

important Windows system activities such as Windows Update can fail. We advise you to use caution and good

engineering judgement.

See Also

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
5

PolApproveRename callback function
A Solution Policy DLL's PolApproveRename callback function is called to allow the Solution Policy DLL to approve or

reject a file rename operation taking place on a supported file system.

Syntax

POL_APPROVE_RENAME PolApproveRename;

bool

PolApproveRename(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In FE_POLICY_PATH_INFORMATION *NewPolicyPathInfo

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the original name of

the file being renamed.

If FESF has determined that the source file is in a “bypass” region, then the FE_POLICY_PATH_NAME_BYPASS

flag will be set. A bypass region is one in which file opens are always raw (because of interoperability issues).

If the requested rename is to replace an existing file (if one exists) then the

FE_POLICY_PATH_REPLACE_IF_EXISTS flag is set.

ThreadId [in]

The identifier of the thread attempting to rename the file.

NewPolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the proposed new

name of the file being renamed.

Note that if Windows has not been able to supply the new name then the

FE_POLICY_PATH_TARGET_NAME_INVALID flag will be set and the RelativePath will be invalid.

This is often provoked by renaming a file “through” a directory symbolic link to a network Share.

If FESF has determined that the new name is “bypass”, then the FE_POLICY_PATH_NAME_BYPASS flag will

be set. A “bypass region” is one in which file opens are always raw because of interoperability issues.

Return value

To approve the rename operation and let it proceed, the PolApproveRename callback function returns TRUE.

Otherwise, it returns FALSE.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
6

If FALSE is returned, FESF will fail the thread's rename operation. How the requesting thread/process reacts to having

this error returned is dependent on the thread/process.

Remarks

A Solution Policy DLL's PolApproveRename callback function is called by FESF to allow the Solution Policy DLL to

approve or reject a proposed rename operation for security reasons.

Implementation of this callback function is optional for a Solution Policy DLL. If this function is not implemented, FESF

allows the rename.

Depending on how their Solution works, developers might choose to implement this callback (for example) to prevent

files from being renamed into a directory where the files are all intended to be encrypted.

Solution developers should be VERY cautious about returning FALSE from this callback as a result of what should be

non-fatal errors. For example, if you return FALSE (thereby disallowing the requested rename operation) as a result of

a function such as GetExecutablePathForThreadId or GetSidForThreadId failing due to a system protection issue,

important Windows system activities such as Windows Update can fail. We advise you to use caution and good

engineering judgement.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
7

PolApproveTransactedOpen callback function
A Policy DLL's PolApproveTransactedOpen callback function is called to allow the Policy DLL to approve or reject a

transacted (or similar) open for a new file. All such opens are given RAW access by default. This call provides a

mechanism to “veto” such raw access.

Syntax

POL_APPROVE_TRANSACTED_OPEN PolApproveTransactedOpen;

bool

PolApproveTransactedOpen (

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In LPGUID TransactionUnitOfWork,

 In DWORD ThreadId,

 In DWORD GrantedAccess,

 In DWORD CreateAction

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the name of the file to

be transactionally opened (for example, by a user having called the Windows function CreateFileTransacted).

TransactionUnitOfWork [in]

The ID (unit of work) of the transaction which this create is a part of.

This will be all zeros if the FE_POLICY_PATH_MULTIPLE_VIEWS flag is set.

ThreadId [in]

The identifier of the thread attempting to open the file.

GrantedAccess [in]

A bitmask representing the File Access Rights that the thread opening/creating the file/directory has been

granted. See PolGetPolicyExistingFile for more details

CreateAction [in]

A value indicating the action taken as a result of the thread's CreateFile call. See the description of the

CreateAction parameter on the PolGetPolicyNewFile call for a list of these constants.

Return value

To approve the transactional open, the PolApproveTransactedOpen callback function returns TRUE. Otherwise, it

returns FALSE.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
8

If FALSE is returned, FESF will fail the open. How the requesting thread/process reacts to having this error returned is

dependent on the thread/process.

Remarks

The use of this callback has changed slightly starting in FESF V2. The new (V2.0 and later) behavior is described below.

Transaction support is a legacy feature that is supported only by NTFS and has been deprecated by Microsoft for at

least ten years. FESF does not support transactional opens of FESF (new or existing) encrypted files. If an attempt is

made to open an (existing) FESF encrypted file as part of an NTFS transaction, the request will be rejected with

STATUS_TRANSACTIONAL_CONFLICT.

This callback is only called (a) for non-network files, and (b) for files created on volumes that support transactions.

That means, practically speaking, that the Solution Policy DLL will only get this callback for files created on local NTFS

volumes.

By default, when a new file is created within an NTFS transaction, the Policy DLL’s PolGetPolicyNewFile callback is not

called, and the file will be created raw. it will be raw. The Policy DLL’s PolApproveTransactedOpen callback function

allows the Policy DLL to approve or reject the transactional creation of a new, raw, file. A Policy DLL might do this (for

example) to prevent the creation of a file in a directory in which all files are assumed to be FESF encrypted.

Implementation of this callback function is optional for a Policy DLL. If this function is not implemented, FESF will

allow transactional create operations.

Solution developers should be VERY cautious about returning FALSE from this callback. Many critical parts of the

system (notably Windows Update) still rely on transacted opens and failing them will (at best) cause such operations

to fail.

Note that if a file was created as a result of a transacted open, then failing the transaction will not cause the file to be

deleted. It is to be expected, however, that the application issuing the transacted open will roll back the transaction

and that will have the effect of deleting the file (which was only visible within the transaction anyway).

See Also

Requirements

Software version FESF V1.1 (or later)

Library Fe2Policy.lib

Header PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e4
9

PolAttachVolume callback function
A Solution Policy DLL's PolAttachVolume callback function is called to inform the Solution Policy DLL that a volume has

been discovered or a network share has been mapped. This callback allows the Solution Policy DLL to tell FESF

whether it should process files on the volume/share.

Syntax

bool

POL_ATTACH_VOLUME(

 In GUID* VolumeGUID,

 In FE_POLICY_VOLUME_INFORMATION* VolumeInformation

);

Parameters

VolumeGUID [in]

The volume’s GUID. This will be the GUID uniquely identifying the volume, or one of the FESF-defined GUIDS:

FE_SHADOW_VOLUME_GUID, FE_NETWORK_GUID, or FE_NO_VOLUME_GUID_AVAILABLE. Note that

starting in FESF V2 this parameter is input to the Solution Policy DLL only.

VolumeInformation [in]

A pointer to an FESF_VOUME_INFORMATION structure that contains information about the volume or share

that’s been discovered.

Return value

If the DLL returns TRUE, then FESF will process files on this volume.

Remarks

This callback is optional. If it is not provided, FESF will process files on the volume/share.

If PolAttachVolume returns TRUE, FESF will process future files accessed on the volume/share. The Solution Policy

DLL’s PolGetPolicyNewFile will be called for new files created on the volume/share, and PolGetPolicyExistingFile will

be called when an FESF encrypted file is opened on the volume/share.

If PolAttachVolume returns FALSE, FESF will not process future files accesses on the volume/share. As a result, the

Solution Policy DLL’s callback will not be involved for any operations on the volume/share. In this case, FESF either

performs no subsequent processing at all on the volume or reduces its processing on the volume to the absolute

minimum possible. This callback provides the Solution Policy DLL with a powerful mechanism to reduce the number of

callbacks it will receive, by allowing it to eliminate entire volumes from policy consideration.

The values passed as arguments into this structure are as provided to the FESF kernel-mode filter components by the

Windows Filter Manager. See, for example, the Microsoft documentation for the PFLT_INSTANCE_SETUP_CALLBACK

callback function.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
0

Note that PolAttachVolume is not called for partitions that are not processed by Windows, nor is it called for any OEM

partitions, the system recovery partition(s), UEFI boot partition(s) or for file systems that are not supported by FESF

(such as CDFS or UDF). By design FESF does not process file accesses on these volumes.

When a volume that has not yet been presented to the Solution Policy is accessed, and the Solution Policy DLL is

available, FESF V2 will present the volume to the Solution Policy DLL’s PolAttachVolume callback (and “remember”

that the Solution Policy DLL has been presented this volume).

When a volume that has not yet been presented to the Solution Policy is accessed (such as during system startup),

and the Solution Policy DLL is not running, FESF V2 will allow access to raw files and will deny access to existing FESF

encrypted files.

PolAttachVolume is called only once (during the course of system operation) for each discovered volume. FESF

“remembers” whether a given volume (including volumes on network shares) has been presented to the Solution

Policy DLL. Thus, if Fe2Policy and the Solution Policy DLL are restarted, it will not receive notification of the volumes

that had previously been presented to the PolAttachVolume callback.

If PolAttachVolume is implemented by the Solution Policy DLL, the volume must not be accessed by the Solution until

PolAttachVolume has successfully returned and Windows has completed volume mount processing. Thus, the

Solution Policy DLL cannot call functions such as GetVolumeInformation or CreateFIle for any file targeting the

volume being mounted from within its PolAttachVolume callback. Prematurely accessing the volume being mounted

from within the Solution Policy DLL will lead to a Windows deadlock. This is a Windows operating system restriction.

Changes From FESF V1

In FESF V1, the Solution Policy DLL could optionally return a GUID of its choosing by overwriting the value passed in

the VolumeGUID parameter. Starting in FESF V2.0 this option is no longer supported. If the Solution Policy DLL

attempts to return a changed value in the VolumeGUID parameter in FESF V2.0 or later, the Policy Service logs an

error and changes the return value to “FALSE” thus causing FESF to NOT process files on the volume.

Starting in FESF V2, this callback is called for all supported volumes and network shares on the system, even those

that were discovered by Windows before the Solution Policy DLL was started. FESF tracks whether a given

volume/share has been presented to the Solution Policy DLL since the system was started. If it has not, FESF will

present the volume/share to the Solution Policy DLL when a new CreateFile file operation is performed on the

volume/share. This allows the Solution Policy DLL to indicate whether FESF should support encryption and decryption

operations on the volume.

See Also

Requirements

Software version FESF V1.6 (or later) / Changes as noted in FESF 2.0 (and later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
1

PolFreeHeader callback function
A Solution Policy DLL's PolFreeHeader callback function is called to enable the Solution Policy DLL to return the

storage that it previously allocated for Solution Header Data.

Syntax

POL_FREE_HEADER PolFreeHeader;

VOID

PolFreeHeader(

 In PVOID PolHeaderData,

 In DWORD PolHeaderDataSize

)

Parameters

PolHeaderData [in]

A pointer to a Solution Header Data area to be returned that was previously allocated by the Solution Policy

DLL.

PolHeaderDataSize [in]

The size, in bytes, of the Solution Header Data area.

Return value

(none)

Remarks

A Solution Policy DLL's PolFreeHeader callback function is called by FESF to allow the Solution Policy DLL to deallocate

space that it previously allocated for storage of Solution Header Data. This Solution Header Data was provided to FESF

by the Solution Policy DLL on return from the PolGetKeyNewFile callback function.

Solution Policy DLLs must implement this callback function.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
2

PolFreeKey callback function
A Solution Policy DLL's PolFreeKey callback function is called to enable the Solution Policy DLL to return the storage

that it previously allocated for key storage.

Syntax

POL_FREE_KEY PolFreeKey;

VOID

PolFreeKey(

 In PVOID PolKey,

 In DWORD PolKeySize

)

Parameters

PolKey [in]

A pointer to a key data storage area to be returned that was previously allocated by the Solution Policy DLL.

PolKeySize [in]

The size, in bytes, of the key storage area.

Return value

(none)

Remarks

A Solution Policy DLL's PolFreeKey callback function is called by FESF to allow the Solution Policy DLL to deallocate

space that it previously allocated for storage of key data information. This key buffer was provided to FESF by the

Solution Policy DLL on return from the PolGetKeyNewFile or PolGetKeyFromHeader callback function.

This callback function is separate from the PolFreeHeader callback function to allow for different allocation and return

methods for Solution Header Data (which is presumably not security sensitive) and key information (which is

presumably sensitive from a security standpoint). In most Solution Policy DLL implementations PolFreeKey would

overwrite the key storage area with random data before freeing it.

Solution Policy DLLs must implement this callback function.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
3

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
4

PolGetKeyFromHeader callback function
A Solution Policy DLL's PolGetKeyFromHeader callback function returns the key and encryption algorithm for an

existing FESF encrypted file, given the accessing thread ID, SID, the file path and policy Solution Header Data.

Syntax

POL_GET_KEY_FROM_HEADER PolGetKeyFromHeader;

bool

PolGetKeyFromHeader(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In PVOID PolHeaderData,

 In DWORD PolHeaderDataSize,

 Out LPCWSTR *PolUniqueAlgorithmId,

 Out PVOID *PolKey,

 Out DWORD *PolKeySize,

 _Outptr_result_maybenull_ PVOID *CleanupInfo,

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being created

and the SID of the requestor.

ThreadId [in]

The identifier of the thread creating the file.

PolHeaderData [in]

A pointer to an FESF allocated storage area containing the Solution Header Data that FESF retrieved from the

file. This data was previously provided to FESF by the Solution Policy DLL as output from a successful call to

PolGetKeyNewFile.

PolHeaderDataSize [in]

The size, in bytes, of the Solution Header Data provided in the buffer pointed to by PolHeaderData.

PolUniqueAlgorithmId [out]

A pointer to a wide character string representing the encryption algorithm and properties to be used to

encrypt and decrypt file data. PolUniqueAlgorithmId must match one previously specified by the Solution

Policy DLL in the FE2_POLICY_CONFIG structure passed to FePolicySetConfiguration.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
5

PolKey [out]

A pointer to a storage area allocated by the Solution Policy DLL containing encryption key data. FESF will pass

this key data to the CNG cryptographic algorithm provider indicated by Algorithm. FESF calls the Solution

Policy DLL's PolFreeKey callback function when it no longer needs the key data and the allocated storage can

be freed.

PolKeySize [out]

The size, in bytes, of the key data in the buffer pointed to by PolKey.

CleanupInfo [out, opt]

A pointer to a Solution Policy DLL defined context value that will be passed to the Solution Policy DLL's

PolReportLastHandleClosed callback function. This parameter is optional and may be NULL.

If this value is specified and the file already has a CleanupInfo registered then you will be called back at

PolReportLastHandleClosed with the previous value to CleanupInfo.

Return value

To indicate success, and that it is supplying valid values for all output parameters, the PolGetKeyFromHeader callback

function returns TRUE. Otherwise, it returns FALSE.

If FALSE is returned, the thread's CreateFile operation will fail with an error. See the Remarks section for more

information on the consequences of returning FALSE. See the section Returning Failure from a Solution Policy DLL

Remarks

All Solution Policy DLLs must implement this callback function.

A Solution Policy DLL's PolGetKeyFromHeader callback function is called by FESF to determine the encryption

algorithm and key data to be used by the CNG provider to encrypt or decrypt data in an existing FESF encrypted file.

This function is always called after a call to PolGetPolicyExistingFile has returned FE_POLICY_ENCRYPT_DECRYPT and

FESF does not already have key information for the file.

As previously described, encryption key data is interpreted by FESF as an opaque data block that it passes to the CNG

crypto provider for use as an encryption key. FESF does not interpret or verify this key data. For custom CNGs this

transparent key data could be an indirect reference to something maintained by the custom CNG that provides the

actual symmetric key used to encrypt and decrypt the file's data.

The Solution Policy DLL derives the encryption algorithm and key data from the provided thread, header and

FE_POLICY_PATH_INFORMATION (including requestor SID) for the file.

PolGetKeyFromHeader is called as part of Windows' processing a CreateFile call made by the thread indicated by

ThreadID for the file described by PolicyPathInfo. The call to PolGetKeyFromHeader occurs after CreateFile has

succeeded but before the final result is returned to the thread. Because the PolGetKeyFromHeader callback is

blocking CreateFile from completing, processing in this function must be prompt.

Solution Policy DLLs should return FALSE from their PolGetKeyFromHeader callback only when absolutely necessary.

Because PolGetKeyFromHeader is called after Windows CreateFile processing has completed, returning FALSE will

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
6

result in a new zero length file being created or, perhaps, a previously existing file being overwritten with a new zero

length file. Als.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (and later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
7

PolGetKeyNewFile callback function
A Solution Policy DLL's PolGetKeyNewFile callback function provides key material for a new file that is to be stored in

FESF encrypted format.

Syntax

POL_GET_KEY_NEW_FILE_EX PolGetKeyNewFile;

bool

PolGetKeyNewFile(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In PVOID Context,

 Out PVOID *PolHeaderData,

 Out DWORD *PolHeaderDataSize,

 Out LPCWSTR *PolUniqueAlgorithmId,

 Out PVOID *PolKey,

 Out DWORD *PolKeySize,

 _Outptr_result_maybenull_ PVOID *CleanupInfo,

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being created

and the SID of the requestor.

ThreadId [in]

The identifier of the thread creating the file.

Context[in]

Caller-supplied value previously returned as output from the PolGetPolicyNewFile callback.

PolHeaderData [out]

A pointer to a storage area allocated by the Solution Policy DLL containing Solution Policy DLL defined

Solution Header Data for FESF to store with the newly created file. FESF calls the Solution Policy DLL's

PolFreeHeader callback function when it no longer needs the header data.

PolHeaderDataSize [out]

The size, in bytes, of the Solution Header Data returned in the buffer pointed to by PolHeaderData.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
8

PolUniqueAlgorithmId [out]

A pointer to a wide character string representing the encryption algorithm and properties to be used to

encrypt and decrypt file data. PolUniqueAlgorithmId must match one previously specified by the Solution

Policy DLL in the FE2_POLICY_CONFIG structure passed to FePolicySetConfiguration.

PolKey [out]

A pointer to a storage area allocated by the Solution Policy DLL containing encryption key data. FESF will pass

this key data to the CNG cryptographic algorithm provider indicated by Algorithm. FESF calls the Solution

Policy DLL's PolFreeKey callback function when it no longer needs the key data and the allocated storage can

be freed.

PolKeySize [out]

The size, in bytes, of the key in the buffer pointed to by PolKey.

CleanupInfo [out, opt]

A pointer to a Solution Policy DLL defined context value that will be passed to the Solution Policy DLL's

PolReportLastHandleClosed callback function. This parameter is optional and may be NULL.

If this value is specified and the file already has a CleanupInfo registered then you will be called back at

PolReportLastHandleClosed with the previous value to CleanupInfo

Return value

To indicate success, and that it is supplying valid values for all output parameters, the PolGetPolicyNewFile callback

function returns TRUE. Otherwise, it returns FALSE.

If FALSE is returned, the thread's CreateFile operation will fail with an error. See the Remarks section for more

information on the consequences of returning FALSE.

Remarks

All Solution Policy DLLs must implement this callback function.

A Solution Policy DLL's PolGetKeyNewFile callback function is called by FESF to determine the encryption algorithm

and key data for a new file that will be stored in encrypted format. This function is always called after a call to

PolGetPolicyNewFile has returned FE_POLICY_ENCRYPT_DECRYPT.

Prior to the first write to a file stored in FESF encrypted format, FESF stores the Solution Header Data returned in

PolHeaderData from this function as well as certain FESF control information in the file. FESF stores the Solution

Header exactly as it is provided by the Solution Policy DLL. FESF does not process or encrypt this data.

After a file's data has been encrypted by FESF, when the file is opened for encrypt/decrypt access and FESF does not

already have key information for the file, the Solution Header Data will be retrieved from the file and returned to the

Solution Policy DLL at its PolGetKeyFromHeader callback function. Given this Solution Header Data, the Solution Policy

DLL must be able to derive the same encryption Algorithm ID, Key Data, and Key Size that are returned here in the

PolUniqueAlgorithmId, PolKey, and PolKeySize parameters. See the description of the PolGetKeyFromHeader callback

function for more information.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e5
9

Note that encryption key data is interpreted by FESF as a transparent block of data that it passes to the CNG provider

for use as an encryption key. For custom CNGs this transparent key data could be an indirect reference to something

maintained by the custom CNG that provides the actual symmetric key used to encrypt and decrypt the file's data.

PolGetKeyNewFile is called as part of Windows' processing a system service call (such as CreateFile) made by the

thread indicated by ThreadID for the file described by PolicyPathInfo. The call to PolGetKeyNewFile occurs after the

system service call has succeeded but before the final result is returned to the thread. Because the PolGetKeyNewFile

callback is blocking the system service from completing, processing in this function must be prompt.

Solution Policy DLLs should return FALSE from their PolGetKeyNewFile callback only when absolutely necessary.

Because PolGetKeyNewFile is called after Windows system service processing has completed, returning FALSE will

result in a new zero length file being created or, perhaps, a previously existing file being overwritten with a new zero

length file. For more information, see Returning Failure from Solution Policy DLL Callbacks.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
0

PolGetLockRounding callback function
When present, a Solution Policy DLL's PolGetLockRounding callback function is called to find the “lock rounding”

which should be associated with all accessors to a file prior to the locking request being sent to the remote server.

See Remarks.

Syntax

FESF_LOCK_ROUNDING

POL_GET_LOCK_ROUNDING(

 In FE_POLICY_PATH_INFORMATION* PolicyPathInfo

);

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being created

and the SID of the requestor. The VolumeGuid member will always be FE_NETWORK_GUID.

Return value

The Solution Policy DLL must return one of these values:

• FESF_LOCK_ROUNDING::InsideFileOnly to indicate that rounding should only be applied within the current length

of the file. This is the default value.

• FESF_LOCK_ROUNDING::AlwaysOn to indicate that all ranges are always rounded.

• FESF_LOCK_ROUNDING::Off to indicate that rounding should never be applied for this file.

Remarks

This function is called to set the rounding applied to LockFile operations prior to the request being passed across to

remote file servers. All IO from FESF is done via the cache and hence is aligned to page boundaries. It is therefore

usual to round all byte range lock requests out to the page boundary – this ensures that IO will always be accepted by

the remote server.

Some applications are known to use byte range locks not to protect against application conflict, but rather to signal

between remote copies of the application. Typically, such applications will lock a single byte, usually well beyond the

end of file, but occasionally within the file. In this situation, the rounding of byte range locks stops the application

from functioning whilst suppressing the lock rounding does not impede function (since it is not being used to arbitrate

access to regions of the file).

The default rounding applied by FESF is to round to the page boundaries up to the end of file (plus a small margin).

This has been found to be the best compromise. This default behavior can be overridden on a system wide basis by a

registry setting.

This API allows control of the rounding on a per file basis. So, for instance, files only accessed by Outlook, which is

known to use lock rounding within the file in certain versions, can be marked as “never round”.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
1

See Also

Requirements

Software version FESF V1.8 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
2

PolGetPolicyDirectoryListing callback function
When present, allows the Solution Policy DLL to determine whether the sizes returned in a given directory listing

reflect the “raw” or “corrected” sizes for FESF encrypted files.

Syntax

POL_GET_POLICY_DIRECTORY_LISTING PolGetPolicyDirectoryListing;

FE_POLICY_RESULT

PolGetPolicyDirectoryListing (

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the directory being

opened.

ThreadId [in]

The identifier of the thread opening the directory.

Return value

The Solution Policy DLL's PolGetPolicyDirectoryListing callback function returns an enumeration value of the type

FE_POLICY_RESULT that determines FESF's action on directory enumerations via the opened file handle.

If PolGetPolicyDirectoryListing returns FE_POLICY_ENCRYPT_DECRYPT, then the file sizes returned, if this handle is

used to enumerate the directory, will be those visible to an application given FE_POLICY_ENCRYPT_DECRYPT in

response to a call to PolGetPolicyExistingFile.

If PolGetPolicyDirectoryListing returns FE_POLICY_RAW, then the enumeration will return the on-disk size, which is

the size visible to an application given FE_POLICY_RAW in response to a call to PolGetPolicyExistingFile.

If PolGetPolicyDirectoryListing cannot specify an encryption policy for the file being opened, for example due to an

error in processing, PolGetPolicyDirectoryListing returns the enumeration value FE_POLICY_FAIL. This will cause the

thread's directory enummeration operation to fail with an error.

Remarks

When a program queries the size of a specific file using a handle that has been given RAW access to the file, the

program gets back the raw (that is, uncorrected) file size. This size includes the size of the file’s data, plus the FESF

Metadata including the Solution Header. Similarly, when a program queries the size of a file using a handle that’s

been given ENC/DEC access to the file, FESF returns the corrected size of the file. This size reflects just the size of the

data in the file.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
3

A Solution Policy DLL's PolGetPolicyDirectoryListing callback function determines whether the sizes of FESF encrypted

files returned in a directory listing will reflect the raw (uncorrected) or the corrected size of any FESF encrypted files

that are within that directory. Notice that this callback applies specifically to size returned in the directory listing, not

the size returned to an application when it opens a file and then queries the size of that file.

The raw (uncorrected) size of the file is the size of the file on disk, including storage for the Solution Header and FESF

control metadata. The corrected size of the file is the size of the file’s data, which is the size that the file’s data would

be if it were not FESF encrypted.

This function is optional. If it is not implemented, then all directory enumerations will see the encrypted size (as if

FE_POLICY_ENCRYPT_DECRYPT was always returned).

If FESF Policy Caching is enabled, FESF will remember the policy decision returned by PolGetPolicyDirectoryListing. In

this case, if the process owning the ThreadID opens this file in the future FESF will automatically apply the same

policy. This helps reduce system overhead by potentially avoiding a call to PolGetPolicyDirectoryListing. The duration

of this caching behavior lasts as long as the Windows file cache for this directory persists, which in turn depends on

numerous factors that cannot be directly controlled. The FESF Policy Cache can be flushed at any time by the Solution

Policy DLL. For more information, see FESF Policy Caching.

PolGetPolicyDirectoryListing is called as part of Windows' processing a system service call (such as FindFirstFile and

FindNextFile) made by the thread indicated by ThreadID for the file described by PolicyPathInfo. The call to

PolGetPolicyDirectoryListing occurs after the system service call has succeeded but before the final result is returned

to the thread. Because the PolGetPolicyDirectoryListing callback is blocking the system service call from completing,

processing in this function must be prompt.

Whether the raw or corrected size is returned in a directory listing can be important when applications with RAW

access use the size from the directory listing (as opposed to the size from an individual query for the file size using a

RAW handle) to determine how much of a file to copy. During extended usage testing of FESF, OSR was surprised to

find a number of applications that did this. Two specific examples are the xcopy command, and the Microsoft

OneDrive application. However, we wouldn’t be surprised if other programs such as certain backup applications

behaved similarly.

See Also

Requirements

Software version FESF V1.1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
4

PolGetPolicyExistingFile callback function
A Solution Policy DLL's PolGetPolicyExistingFile callback function determines whether a specific open instance of an

existing encrypted file should receive encrypted or non-encrypted (raw, cleartext) access.

Syntax

POL_GET_POLICY_EXISTING_FILE PolGetPolicyExistingFile;

FE_POLICY_RESULT

PolGetPolicyExistingFile(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In PVOID PolHeaderData,

 In DWORD PolHeaderDataSize,

 In DWORD GrantedAccess,

 In DWORD CreateAction

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being opened

and the SID of the requestor.

ThreadId [in]

The identifier of the thread opening the file.

PolHeaderData [in]

A pointer to an FESF allocated storage area containing the Solution Policy DLL's Solution Header Data that

FESF retrieved from the file. This data was previously provided to FESF by the Solution Policy DLL as output

from a successful call to PolGetKeyNewFile.

PolHeaderDataSize [in]

The size, in bytes, of the Solution Header Data provided in the buffer pointed to by PolHeaderData.

GrantedAccess [in]

A bitmask representing the File Access Rights that the thread opening the file has been granted. File Access

Rights are represented by standard Windows-defined constants. See the description of the GrantedAccess

parameter on the PolGetPolicyNewFile call for a list of these constants.

CreateAction [in]

A value indicating the action taken as a result of the thread's CreateFile call. See the description of the

CreateAction parameter on the PolGetPolicyNewFile call for a list of these constants.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
5

Return value

The Solution Policy DLL's PolGetPolicyExistingFile callback function returns an enumeration value of the type

FE_POLICY_RESULT that determines FESF's action on subsequent read or write operations via the opened file handle.

If PolGetPolicyExistingFile returns FE_POLICY_ENCRYPT_DECRYPT, data read from the file will be transparently

decrypted by FESF before it is returned to the reader, and data written to the file will be transparently encrypted by

FESF before it is stored in the file.

If PolGetPolicyExistingFile returns FE_POLICY_RAW, read and write operations on the file will be performed on the

data as provided. That is, no transparent encryption or decryption of data will take place.

If PolGetPolicyExistingFile cannot specify an encryption policy for the file being opened, for example due to an error in

processing, PolGetPolicyExistingFile returns the enumeration value FE_POLICY_FAIL. This will cause the thread's

CreateFile operation to fail with an error. Solution Policy DLLs should return FE_POLICY_FAIL from their

PolGetPolicyDirectoryListing callback only when absolutely necessary. For more information see Returning Failure

from Solution Policy DLL Callbacks elsewhere in this document.

Remarks

All Solution Policy DLLs must implement this callback function.

FESF calls a Solution Policy DLL's PolGetPolicyExistingFile callback function whenever a thread successfully opens an

existing file that contains FESF encrypted data. There are two exceptions:

• When FESF Policy Caching is enabled and policy information has already been cached for the combination of file,

process, and access being processed. In this case, FESF uses the cached policy, and the Solution Policy DLL is not

called.

• When an encrypted file is opened transactionally (such as the result of a thread calling CreateFileTransacted).

These opens are denied by FESF with STATUS_TRANSACTIONAL_CONFLICT without the Solution Policy DLL being

called. Note that transactions have only ever been supported by NTFS, are not supported by ReFS or FAT, and

have been deprecated by Microsoft for many years.

Note that PolGetPolicyExistingFile is never called when a file containing non-encrypted data is opened.

FESF calls a Solution Policy DLL's PolGetPolicyExistingFile callback function to determine the policy for a specific

CreateFile request on an existing encrypted file. The policy specifies whether a given open request is granted raw or

encrypt/decrypt access to the data in the file. The policy decision can be based on the parameters passed into this

function as well as any additional information PolGetPolicyExistingFile acquires on its own.

Given the ThreadID provided in this callback, PolGetPolicyExistingFile can call FESF-provided helper functions to

retrieve additional information about the calling thread, including the directory and file name of the executing

program. The security principal (SID) under which the requestor is running is provided in the

FE_POLICY_PATH_INFORMATION structure.

If the FE_POLICY_PATH_FILE_DEHYDRATED flag is set in the PolicyFlags field of the provided PolicyPathInfo structure,

the file being accessed is locally “dehydrated” and encrypted. In this context, “dehydrated” means that the file’s data

is located in the cloud and only a placeholder representing the file is stored locally on disk.

Each cloud provider behaves differently, and you will need to understand the precise behavior and the consequences

of recalling dehydrated files. However, in general, if your Solution intends to handle files that are “unencrypted in the

cloud” you should never return raw to opens that have the FE_POLICY_PATH_FILE_DEHYDRATED flag set.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
6

If FESF Policy Caching is enabled, FESF will remember the policy decision returned by PolGetPolicyExistingFile. In this

case, if the process owning the ThreadID opens this file in the future with the same access described by

GrantedAccess, FESF will automatically apply the same policy. This helps reduce system overhead by potentially

avoiding a call to PolGetPolicyExistingFile. The duration of this caching behavior lasts as long as the Windows file

cache for this file persists. The FESF Policy Cache can be flushed at any time by the Solution Policy DLL. For more

information, see FESF Policy Caching.

PolGetPolicyExistingFile is called as part of Windows' processing a system service call (such as CreateFile) made by the

thread indicated by ThreadID for the file described by PolicyPathInfo. The call to PolGetPolicyExistingFile occurs after

the system service call has succeeded but before the result is returned to the thread. Because the

PolGetPolicyExistingFile callback is blocking the system service call from completing, processing in this function must

be prompt.

Because of the asynchronous nature of Windows, in some unusual cases the values provided for CreateAction can be

unexpected. For example, PolGetPolicyNewFile is called when an existing zero length file is encountered (including a

file that is superseded as part of being opened).

Also note that there is an inherent risk in providing mixed responses to this call. If a given file is opened for shared

write access and one open is granted FE_POLCY_ENCRYPT_DECRYPT and the other open is granted FE_POLCY_RAW,

there is no way for FESF to ensure that the resulting file, with its potential mixture of encrypted and decrypted data,

contains usable data. In fact, this can even lead to Solution Header Data or FESF metadata being corrupted. This can

lead to a situation in which FESF will identify the file as being inconsistent. See the description of the

PolReportFileInconsistent callback for more details.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
7

PolGetPolicyNewFile callback function
A Solution Policy DLL's PolGetPolicyNewFile callback function determines whether a new file should be created in

encrypted or non-encrypted format.

Syntax

POL_GET_POLICY_NEW_FILE PolGetPolicyNewFile;

FE_POLICY_RESULT

PolGetPolicyNewFile(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In DWORD GrantedAccess,

 In DWORD CreateAction,

 Out PVOID *Context

)

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being created

and the SID of the requestor.

ThreadId [in]

The identifier of the thread creating the file.

GrantedAccess [in]

A bitmask representing the File Access Rights that the thread creating the file has been granted. File Access

Rights are represented by standard Windows-defined constants as follows:

FILE_READ_DATA
0x001 The right to read the file data.

FILE_READ_DATA
0x002 The right to write data to the file.

FILE_APPEND_DATA
0x004 The right to append data to the file.

FILE_READ_EA
0x008 The right to read extended file attributes.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
8

FILE_WRITE_EA
0x010 The right to write extended file attributes.

FILE_EXECUTE
0x020

For a native code file, the right to execute the file. This access right
given to scripts may cause the script to be executable, depending on
the script interpreter.

FILE_READ_ATTRIBUTES
0x080 The right to read file attributes.

FILE_WRITE_ATTRIBUTES
0x100 The right to write file attributes.

CreateAction [in]

A value indicating the action taken as a result of the thread's CreateFile call. The CreateAction will be one of

the following constant values:

POL_CREATE_ACTION_SUPERSEDED
0x000 An existing file was deleted and a new file was created in its place.

POL_CREATE_ACTION_OPENED
0x001 An existing file was opened.

POL_CREATE_ACTION_CREATED
0x002

A new file was created.

POL_CREATE_ACTION_OVERWRITTEN
0x003 An existing file was overwritten

See the Remarks section for additional information regarding the meaning of these parameters.

Context [out]

A Solution Policy DLL determined value for FESF to pass to the matching PolGetKeyNewFile callback (which

will immediately follow if this function returns FE_POLICY_ENCRYPT_DECRYPT).

Return value

The PolGetPolicyNewFile callback function returns an enumeration value of the type FE_POLICY_RESULT indicating

the encryption policy for a new file that is being created.

To cause the file to be created with encrypted data, PolGetPolicyNewFile returns the enumeration value

FE_POLICY_ENCRYPT_DECRYPT. To cause the file to be created with non-encrypted (raw, cleartext) data,

PolGetPolicyNewFile returns the enumeration value FE_POLICY_RAW.

If PolGetPolicyNewFile cannot specify an encryption policy for the newly created file, for example due to an error in

processing, PolGetPolicyNewFile may return the enumeration value FE_POLICY_FAIL. This will cause the thread's

CreateFile operation to fail with an error. Solution Policy DLLs should return FE_POLICY_FAIL from their

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e6
9

PolGetPolicyDirectoryListing callback only when absolutely necessary. For more information see Returning Failure

from Solution Policy DLL Callbacks elsewhere in this document.

Remarks

All Solution Policy DLLs must implement this callback function.

A Solution Policy DLL's PolGetPolicyNewFile callback function is called by FESF to determine the policy for a new file.

Policy defines whether the data written by the thread indicated by ThreadID will be stored encrypted or unencrypted.

The policy for a given file can be based on the parameters passed into this function as well as any additional

information PolGetPolicyNewFile acquires on its own.

Given the ThreadID provided in this callback, a Solution can call FESF-provided helper functions to retrieve

information about the calling thread, including the directory and file name of the executing program. The Security

Identifier (SID) of the account under which the thread is running is passed to the Solution Policy DLL in the

FE_POLICY_PATH_INFORMATION structure. Given the SID, the Solution can get the associated username (for

example, one way to do this in C++ is by calling the Windows function LookupAccountSid).

Whenever PolGetPolicyNewFile returns FE_POLCY_ENCRYPT_DECRYPT, FESF will call the Solution Policy DLL at its

PolGetKeyNewFile callback function to retrieve the Algorithm ID, Key, and Solution Header Data for the file.

It is important to understand that FESF considers all the following "new files" and will therefore call

PolGetPolicyNewFile when opening:

• A file on a supported file system that previously did not exist. In this case CreateAction will be

POL_CREATE_ACTION_CREATED.

• A file on a supported file system that is not encrypted by FESF and is zero data bytes in length. In this case

CreateAction will be POL_CREATE_ACTION_OPENED.

• A file on a supported file system that is either encrypted or not encrypted by FESF and is the subject of a

"destructive create." A destructive create is one with a CreateAction of POL_CREATE_ACTION_SUPERSEDED or

POL_CREATE_ACTION_OVERWRITTEN.

The POL_CREATE_ACTION_* values are direct translations of Windows native FILE_* CreateDisposition values. You

can read more about the specific meaning of each of these values in the MSDN documentation for the Windows

NtCreateFile function. This documentation makes clear the difference between, for example,

POL_CREATE_ACTION_SUPERSEDED and POL_CREATE_ACTION_OVERWRITTEN.

When FESF Policy Caching is enabled, if the process owning the ThreadID opens this file in the future with the same

access described by GrantedAccess, FESF may automatically grant FE_POLCY_ENCRYPT_DECRYPT access to this file.

This can help to reduce system overhead, by avoiding a future call to PolGetPolicyExistingFile. For more information,

see FESF Policy Caching.

PolGetPolicyNewFile is called as part of Windows' processing a CreateFile call made by the thread indicated by

ThreadID for the file described by PolicyPathInfo. The call to PolGetPolicyNewFile occurs after CreateFile has

succeeded but before the final result is returned to the thread. Because the PolGetPolicyNewFile callback is blocking

CreateFile from completing, processing in this function must be prompt.

See Also

The FESF Sample Solution contains an example implementation of this callback function. This example is part of the

provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file SampPolicy.cpp.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
0

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
1

PolReportFileInconsistent callback function
[Obsolete and unavailable as of FESF V2.0]

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
2

PolReportLastHandleClosed callback function
A Solution Policy DLL's PolReportLastHandleClosed callback function is called to inform the Solution Policy DLL that the

last handle to a given file has been closed.

Syntax

POL_REPORT_LAST_HANDLE_CLOSED PolReportLastHandleClosed;

VOID

PolReportLastHandleClosed(

 In PVOID CleanupInfo

)

Parameters

CleanupInfo [in]

A Solution Policy DLL defined value that was supplied to either PolGetKeyNewFile or PolGetKeyFromHeader.

This value can be used to identify the file being closed.

Return value

(none)

Remarks

A Solution Policy DLL's PolReportLastHandleClosed callback function is called by FESF to inform the Solution Policy DLL

that the last handle has been closed. This callback allows the Solution Policy DLL to trigger additional processing of the

file. Since the last handle has been closed, a Solution that attempts to open the file in the context of this callback will

usually succeed without encountering a sharing violation. Note, however, that subsequent opens before the callback

is called make sharing violation still possible, just unlikely. Hence your Solution may need to be constructed to

gracefully handle this possibility, for instance, by queuing the work to be done later.

It is important to realize that PolReportLastHandleClosed callback will be called even if the CleanupInfo value was

established up by a previous instance of your Solution Policy DLL (such as when Fe2Policy is restarted). Therefore,

Solution Policy DLLs should never use this parameter to pass a pointer to a DLL structure (because that pointer will no

longer be valid if Fe2Policy exits, and your Solution Policy DLL is reloaded).

Implementation of this callback function is optional for a Solution Policy DLL, and it is rarely specified. If this function

is not implemented, FESF does not notify the Solution Policy DLL of the last close that takes place for a given file.

See Also

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
3

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
4

PolUnInit callback function
A Solution Policy DLL's PolUnInit callback function is called when the system shuts down.

Syntax

POL_UNINIT PolUnInit;

VOID

PolUnInit(

 VOID

)

Parameters

(none)

Return value

(none)

Remarks

A Solution Policy DLL's PolUnInit callback function is called by FESF to allow the Solution Policy DLL to perform an

orderly tear down of any state.

Solution Policy DLLs need not implement this callback function.

See Also

Requirements

Software version FESF V1 (or later)

Library Fe2Policy.lib

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
5

11 FESF Policy Function Reference
The functions in this section are implemented by the FESF Policy Service for exclusive use of the Solution Policy DLL.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
6

FePolSetConfiguration function
Called by the Solution Policy DLL to provide its desired configuration parameters to FESF.

Syntax

DWORD

FePolSetConfiguration(

 In FE2_POLICY_CONFIG * Configuration

)

Parameters

Configuration [in]

A pointer to a FE2_POLICY_CONFIG structure that has been filled-in by the Solution Policy DLL to reflect its

desired configuration.

Return value

If the function succeeds, ERROR_SUCCESS is returned.

If the function fails for any reason, an appropriate error code is returned. If a pointer to a required function is missing

from the FE2_POLICY_CONFIG structure, ERROR_INVALID_DATA is returned.

Remarks

Every Solution Policy DLL must call this function from within its PolicyDllInit callback function, to establish the desired

configuration and provide pointers to other Solution Policy DLL functions for the FESF Policy Service to call.

Note that the Solution Policy DLL can start to receive callbacks from FESF as soon as this call is made.

Any structures that are passed in to FePolSetConfiguration may be freed as soon as FePolSetConfiguration returns to

the caller.

See Also

For an illustration of how to set up the FE2_POLICY_CONFIG structure and calling FePolicySetConfiguration within

the Solution Policy DLL's PolicyDllInit callback function, see SampPolicy.cpp in the Sample Solution.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
7

12 FesfUtil2 Function Reference
The FESFUtil2 DLL is a helper library, designed to assist Client Solutions in performing various FESF utility operations.

FESFUtil2 are designed for use when FESF is installed and running on the system. Note FesfUtil2 exports both native C

and C++ interfaces as described below.

12.1 Using FesfUtil2

12.1.1 C versus C++ API
The FesfUtil2 APIs are available in two forms: C and C++. These two APIs are entirely interchangeable and

interoperable but, to avoid confusion, we recommend that you choose and stick with one set of APIs.

In the FesfUtil2 Library there is a C Language function for each C++ Function. Given a C++ function named

FESFUtil2Function the equivalent function for C will be named FESFUtil2Function_C. The documentation

below describes the C++ function but also provides the C prototype.

All the C++ functions report errors by throwing an exception of type FEU2Exception. The FEU2Exception structure

contains a Win32 error code (and, if applicable, an NTSTATUS value) indicating the error encountered. FEU2Exception

also provides methods for rendering strings that describe the error.

Note the following regarding the C Language functions:

• Every C Language function returns a Win32 Error Code. If the function succeeds, the function returns

ERROR_SUCCESS.

• When a C++ function returns a value, the C equivalent returns the value in one or more [out] parameters. In

these situations, the documentation only refers to the return value.

• Strings that are passed as input must be null terminated.

• Where a buffer and length is passed for the return of a string value, on input the buffer size is specified in bytes

and must include the maximum string length that can fit in the buffer, including the trailing null character (2

bytes long since all strings are wide-character strings).

On return, the buffer length is set by FesfUtil2 to the length (in bytes) of the returned string NOT including the

terminating null character.

• If a buffer and length are passed as input to an FesfUtil2 function, and the indicated buffer is not large enough,

FesfUtil2 will return ERROR_MORE_DATA and the minimum required buffer length will be provided on output in

the buffer length parameter.

• If a C++ function returns a FESF_UTIL2_SOLUTION_HEADER, then the C function has three extra parameters: A

pointer to the buffer into which the header is to be returned, a pointer to a DWORD containing the length of the

buffer on input, and returning the size of the header on output, and a pointer to a DWORD in which is returned

the maximum possible length of the header in the file without extension.

12.1.2 Security Context of called functions
Note that FesfUtil2 is a directly callable DLL and thus will run in the context of, and therefore with the security

credentials of, the calling application. When a function requires the caller to have specific privileges, those privileges

are documented in the function’s description. When a given function requires specific privileges, and those privileges

are not enabled when the function is called, FesfUtil2 will attempt to temporarily enable the required privileges for

the duration of the function call (and disable those privileges before returning). If FesfUtil2 is not able to enable the

required privileges, an error is returned.

If you are migrating a Solution from the legacy FesfDs Service (the “OSR FESF Data Storage Service”), recall that FesfDs

ran with full administrator privileges and therefore, in some cases, could be used by applications with lesser privileges

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
8

to perform what might otherwise be privileged operations. Calling applications will now need to hold all necessary

privileges to perform any functions that are called.

12.1.3 Static and Dynamic Libraries
To allow Solution Developers to select the Microsoft C/C++ run time library option (static or DLL-based) of their

choice, FESFUtil2 is shipped as both a static and a dynamic (DLL) library. The Static library lib files are called

“FESFUtil2_S” (Release) and “FESFUtil2_SD” (Debug). The Dynamic library lib and dll files are both called FESFUtil2.

12.1.4 Tracing and Debugging with FesfUtil2
The Debug and Release versions of FesfUtil2 allow you to specify both the debug/tracing level (volume) and locations

for output of debug/trace messages (referred to as the debug "mode"). The mode options are: to the console (for

console mode programs), to the debugger, to a file, via message box pop-up, or any combination of these

simultaneously. While all these modes are supported for Debug builds of the FesfUtil2 libraries, the Release build of

the FesfUtil2 libraries only supports logging to the debugger or to a file.

The trace "level" and trace "mode" (that is, where trace output is shown) are controlled via Registry entries. The

active level and mode are maintained separately for each application using FesfUtil2 and are read each time an

application using the debug version of FesfUtil2 is started.

The values are:

HKLM\Software\OSR\

FEU2DebugMode : REG_DWORD Where the trace/debug output appears

FEU2TraceLevel: REG_DWORD The trace/debug verbosity.

Supported Values:

 FEU2DebugMode:

0x001 Write messages to a log file

0x002 Write messages to the debugger

0x004 Display message, as it occurs, in a pop-up message box (DEBUG only)

0x100 Write messages to the command window (DEBUG only)

These flags can be or'ed together in any combination.

IMPORTANT: Note that for 32-bit applications (32-bit version of FesfUtil2.dll or 32-bit apps that are statically built

with FesfUtil2) the registry key will be redirected to the 32-bit specific registry. So, while HKLM\Software\OSR may

have specific values set, 32-bit apps will not see these values. You need to set the values for 32-bit apps under:

\HKLM\SOFTWARE\WOW6432Node\OSR\

When messages are written to a log file, that file is %TMP%\FesfUtil2_<PID>.log. The file is created if it is not already

present, and messages are appended to the file if it already exists. The file is opened when an application with logging

is started and is closed then the application exits. In Release builds, the file is opened “WRITE_THROUGH.”

Recall that files created in the %TMP% directory on Windows are never automatically deleted. Thus, some thought is

needed when enabling logging to a file. Also, because file names use the PID of the application, it’s possible to quickly

create a lot of small (potentially empty) trace files. This happens, for example, when you enable logging at the trace

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e7
9

level and run one of the sample tools (like SampDir). Every time you run one of the tools, a new log file will be

created.

When messages are displayed in a pop-up message box, one message box is popped for each debug message, and it

must be dismissed before the app continues. This option can be used from either console mode or windowed

programs. It’s most useful when trying to track down a rare issue.

When messages are displayed to the command window, they are written to stdout. This option is only useful if the

application has a command window. Setting this flag for a GUI app has no effect.

FEU2TraceLevel:

0x001 Trace-level

0x002 Warning-level

0x003 Error-level

0x004 Critical-level

You select one value from the list above, and trace/debug messages at the specified level or higher will be generated

(using the mode specified by the FEU2DebugMode parameter). For Release builds, we force any value less than or

equal to Trace-level to Warning-level (to prevent a situation where the system is barely responsive in the field by

enabling Trace-level debugging, which can be voluminous).

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
0

FesfUtil2FixFileTag Function
Corrects the file size tagging "hint" on an FESF encrypted file. See the remarks section for more information.

Syntax (C++)

void

FesfUtil2FixFileTag(std::wstring_view PathToFix);

Syntax (C)

DWORD

FesfUtil2FixFileTag_C(

 [in] LPCWSTR PathToFix);

Parameters

PathToFix

The fully qualified path to an FESF encrypted file to be updated.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

FESF uses a file's allocation size as a "hint" as to whether the file is encrypted by FESF. This allows FESF to identify files

as being FESF encrypted without having to open each file and look for FESF meta-data. In rare cases, if a file is backed-

up or otherwise altered, that file's length hint can become "broken" causing FESF to no longer recognize an FESF

encrypted file as being encrypted. This function fixes the tagging for that file.

Requires the caller to have SeRestorePrivilege. If the privilege is not already activated, it will be activated by the

function and deactivated before return.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
1

FesfUtil2GetExecutablePathForThreadId

Function
Given a Thread ID, returns a fully qualified path to the thread's executable image.

Syntax (C++)

std::wstring

FesfUtil2GetExecutablePathForThreadId(uint32_t ThreadId);

Syntax (C)

DWORD

FesfUtil2GetExecutablePathForThreadId_C(

 [in] DWORD ThreadId,

 [out] LPWSTR ReturnedPath,

 [out] DWORD* PathBufferSize);

Parameters

ThreadId

Thread ID for which to locate the executable.

Return value

A fully qualified path to the Thread Id's executable image.

Throws

Throws an FEU2Exception if an error is encountered.

Replaces

IFesfUtil:: GetExecutablePathForThreadId

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
2

FesfUtil2GetFileSize Function
Returns the actual size (that is, the size including any FESF private meta-data and the Solution Policy Header).

Syntax (C++)

uint64_t

FesfUtil2GetFileSize(std::wstring_view FileToCheck);

Syntax (C)

DWORD FesfUtil2GetFileSize_C(

 [in] LPCWSTR FileToCheck,

 [out] DWORD64* TrueFileSize);

Parameters

FileToCheck

Fully qualified path name for the file.

Return value

The size of the file, in bytes.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

The "actual" or "true" size of a file that is FESF encrypted is different from the "corrected" file size. The "corrected"

size is the size that indicates how much user-data is stored in the file and most closely approximates the size that the

file would be if it were NOT encrypted. The "actual" size (returned by this function) is the size that includes all the

FESF private meta-data as well as the Solution Policy Header. This size most accurately accounts for the amount of

space occupied by the file on disk.

No special privileges are required, though the caller must have read access to the file being queried if the file is local

and both read and write access to the file being queried if the file is on the network. Network files require exclusive

access.

Replaces

IFesfDs::GetTrueSize and IFesfUtil::GetTrueFileSize

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
3

FesfUtil2GetFullyQualifiedPath Function
Given a Volume GUID and a path relative to that Volume GUID, returns a fully qualified path specification for the file,

as well as an indication as to whether the file is likely to be accessed via the network.

Syntax (C++)

std::pair<std::wstring, bool>

FesfUtil2GetFullyQualifiedPath(

 GUID VolumeGUID,

 std::wstring_view RelativePath);

Syntax (C)

DWORD

FesfUtil2GetFullyQualifiedPath_C(

 [in] GUID VolumeGUID,

 [in] LPCWSTR RelativePath,

 [out] BOOL* IsNetworkPath,

 [out] PWSTR ReturnedPath,

 [inout] DWORD* PathBufferSize));

Parameters

VolumeGUID

A Windows Volume ID, or the FESF-reserved values FE_NETWORK_GUID, FE_SHADOW_VOLUME_GUID, or

GUID_NULL.

RelativePath

A file path specification relative to the VolumeGUID.

Return value

A string containing a fully qualified path for the file, plus a bool indicating whether the returned path represents a

path on the network.

Throws

Throws an FEU2Exception if an error is encountered.

Replaces

IFesfUtil:: GetFullyQualifiedLocalPath

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
4

FesfUtil2GetSidForThreadId Function (deprecated)

Retrieves the Security Identifier SID under which a given thread is running. Note that this function is deprecated. See

the Remarks for further information.

Syntax (C++)

std::wstring

FesfUtil2GetSidForThreadId(uint32_t ThreadId);

Syntax (C)

FesfUtil2GetSidForThreadId_C(

 [in] DWORD ThreadId,

 [out] LPWSTR SidString,

 [inout] DWORD* SidBufferSize);

Parameters

ThreadId

The ID of a currently active thread for which to query the SID.

Return value

A string containing the SID under which ThreadId is running.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

May fail for security reasons when called for certain Windows "protected processes". This is part of the Windows

architecture and cannot be bypassed.

Starting in FESF V2.0 this function is deprecated, in favor of using the SID value that’s passed to the Solution Policy DLL

as part of the FE_POLICY_PATH_INFORMATION structure. In all versions of FESF, there is an extremely rare case

where the SID returned by this function can be wrong. This case only occurs for kernel-mode callers, and when the

requestor has performed a file operation after attaching a thread to another process by calling KeStackAttachProcess.

Thus, in FESF V2.0 the RequestorSID field was added to the FE_POLICY_PATH_INFORMATION structure that’s passed

to various Solution Policy DLL callbacks. The value passed in that parameter is always accurate.

OSR has no plans to immediately remove this function because the error case is so rare. However, developers should

consider moving their Solutions to use the SID passed in FE_POLICY_PATH_INFORMATION whenever this is possible.

Replaces

IFesfUtil:: GetSidForThreadId

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
5

FesfUtil2GetUniversalFilePath Function
Given a file path, which may only be valid within a given session, returns a path which is usable across all sessions on

the current system.

Syntax (C++)

std::wstring

FesfUtil2GetUniversalFilePath(std::wstring_view FilePath);

Syntax (C)

DWORD

FesfUtil2GetUniversalFilePath_C(

 [in] LPCWSTR FilePath,

 [out] LPWSTR ReturnedPath,

 [inout] DWORD* PathBufferSize);

Parameters

FilePath

A file path to query.

Return value

A fully qualified ("UNC") file path that is valid in all sessions.

Throws

Throws an FEU2Exception if an error is encountered.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
6

FesfUtil2GetVersion Function
Returns the current version of the FesfUtil2 library.

Syntax (C++)

std::pair<uint32_t, uint32_t>

FesfUtil2GetVersion();

Syntax (C)

DWORD

FesfUtil2GetVersion_C(

 [out] DWORD* VersionMajor,

 [out] DWORD* VersionMinor);

Return value

Two integer values, the first of which represents the FesfUtil2 major version and the second represents the FesfUtil2

minor version.

Throws

Throws an FEU2Exception if an error is encountered.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
7

FesfUtil2IsFileFesfEncrypted Function
Check to see if a file is in FESF Encrypted format.

Syntax (C++)

bool

FesfUtil2IsFileFesfEncrypted(std::wstring_view FileToCheck);

Syntax (C)

DWORD

FesfUtil2IsFileFesfEncrypted_C(

 [in] LPCWSTR FileToCheck,

 [out] BOOL* FileIsEncrypted);

Parameters

FileToCheck

Fully qualified path name for the file.

Return value

Returns 'true' if the file is FESF encrypted, 'false' otherwise.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

No special privileges are required, though the caller must have read access to the file being queried.

Replaces

IFesfDs:: IsFileEncrypted and IFesfUtil::IsFileEncrypted

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
8

FesfUtil2IsThreadIdInSid Function
Determines if the thread indicated by ThreadId is in the group indicated by GroupSidString.

Syntax (C++)

bool

FesfUtil2IsThreadIdInSid(uint32_t ThreadId,

 std::wstring_view GroupSidString);

Syntax (C)

DWORD

FesfUtil2IsThreadIdInSid_C(

 [in]_DWORD ThreadId,

 [in] LPCWSTR GroupSidString,

 [out] BOOL* ThreadIsInSid);

Parameters

ThreadId

Thread ID of the thread to check.

GroupSidString

String containing a SID to check for membership.

Return value

Returns 'true' if ThreadId is a member of group GroupSidString, 'false' otherwise.

Replaces

IFesfUtil:: IsThreadIdInSid

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e8
9

FesfUtil2PurgePolicyCache Function

(file variant)
Purges data stored in the FESF Policy Cache for the specified file.

Syntax (C++)

void

FesfUtil2PurgePolicyCache(std::wstring_view PathToPurge);

Syntax (C)

DWORD

FesfUtil2PurgePolicyCacheForFile_C([in] LPCWSTR PathToPurge);

Parameters

PathToPurge

Fully qualified path for the file to purge from cache. A fully specified file name is required. Wild cards in the

file specification are not supported.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

This function causes FESF to remove all references to a given file from the FESF Policy Cache. There may be some

delay between the time this function is called and when the Policy Cache is completely purged for the specified file.

Replaces

IFesfUtil::PurgePolicyCacheFile

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
0

FesfUtil2PurgePolicyCache Function (thread

variant)
Purges data stored in the FESF Policy Cache for the process identified by the specified thread.

Syntax (C++)

void

FesfUtil2PurgePolicyCache(uint32_t ThreadIdToPurge);

Syntax (C)

DWORD

FesfUtil2PurgePolicyCacheForThreadId_C([in] DWORD ThreadIdToPurge);

Parameters

ThreadIdToPurge

ID of a thread that identifies the process to be purged. If ThreadIdToPurge is zero, the FESF Policy Cache is

purged for all processes in the system that are active at the time of the call.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

This function cause FESF to remove all references to a given process, or all processes, from its Policy Cache. Note that

there may be some delay between the time this function is called and the Policy Cache being completely purged. Even

though this function takes a Thread ID, the FESF Policy Cache is purged for all threads in the process that owns the

specified thread.

If the ThreadIdToPurge parameter is passed as zero, the FESF Policy Cache is purged for all threads and all processes.

Replaces

IFesfUtil:: PurgePolicyCacheThread

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
1

FesfUtil2ReadHeaderExclusive Function
Reads and returns the Solution Header for an FESF encrypted file. Opens the file for exclusive access, and requires

both read and write access to the file.

Syntax (C++)

FESF_UTIL2_SOLUTION_HEADER

FesfUtil2ReadHeaderExclusive(std::wstring_view FileToRead);

Syntax (C)

DWORD

FesfUtil2ReadHeaderExclusive_C(

 [in] LPCWSTR FileToRead,

 [out] PVOID HeaderBuffer,

 [inout] DWORD* HeaderLength)

Parameters

FileToRead

Fully qualified path name for the file.

Return value

Returns an FESF_UTIL2_SOLUTION_HEADER instance that describes and contains the file's Solution Policy Header.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

Requires the caller to have SeRestorePrivilege. If the privilege is not already activated, it will be activated by the

function and deactivated before return.

Replaces

IFesfDs:: ReadHeader

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
2

FesfUtil2ReadHeaderUnsafe Function
Reads and returns the Solution Header for an FESF encrypted file. Opens the file "shared" and therefore presents a

risk of other programs simultaneously accessing (and possibly updating) the file's header directly via a call to FesfUtil2

or via FESF. When possible, use the function FesfUtil2ReadHeaderExclusive in preference to this function.

Syntax (C++)

FESF_UTIL2_SOLUTION_HEADER

FesfUtil2ReadHeaderUnsafe(std::wstring_view FileToRead);

Syntax (C)

DWORD

FesfUtil2ReadHeaderUnsafe_C(

 [in] LPCWSTR FileToRead,

 [out] PVOID HeaderBuffer,

 [inout] DWORD* HeaderLength,

 [Out] DWORD* MaxHeaderSize)

Parameters

FileToRead

Fully qualified path name for the file.

Return value

Returns an FESF_UTIL2_SOLUTION_HEADER instance that describes and contains the file's Solution Policy Header.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

Requires the caller to have SeRestorePrivilege. If the privilege is not already activated, it will be activated by the

function and deactivated before return.

This function only supports local files. It can NOT be used to read the header of a file that is accessed via the network.

Replaces

IFesfUtil2:: ReadHeaderUnsafe and IFesfUtil2:: ReadHeaderUnsafeFQP

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
3

FesfUtil2SetPolicyCacheState Function
Allows Solutions to globally enable or disable the FESF policy cache.

Syntax (C++)

bool

FesfUtil2SetPolicyCacheState(bool DesiredState);

Syntax (C)

BOOLEAN

FesfUtil2SetPolicyCacheState_C(

 [in] BOOLEAN DesiredState);

Parameters

DesiredState

Set to “true” to enable the FESF global policy cache; Set to “false” to disable the cache.

Return value

A bool value indicating the previous state of the policy cache. ‘True’ indicates that prior to this call, the policy cache

was enabled; ‘false’ indicates that the policy cache was previously disabled.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

On success, when DesiredState is ‘false’ this function will globally purge the policy cache (removing all entries from

the cache).

This function is new as of FESF V2.0

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
4

FesfUtil2UpdateHeaderExclusive Function
Replaces the existing Solution Header on the file indicated by FileToUpdate with the Solution Header provided in

NewHeader. Opens the file for exclusive access and requires both read and write access to the file.

Syntax (C++)

void

FesfUtil2UpdateHeaderExclusive(std::wstring_view FileToUpdate,

 const FESF_UTIL2_SOLUTION_HEADER &NewHeader);

Syntax (C)

DWORD

FesfUtil2UpdateHeaderExclusive_C(

 [in] LPCWSTR FileToUpdate,

 [inout] PVOID HeaderBuffer,

 [in] DWORD HeaderLength);

Parameters

FileToUpdate

Fully qualified path of file to operate on.

NewHeader

Header to be substituted for the existing header.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

Requires the caller to have SeRestorePrivilege. If the privilege is not already activated, it will be activated by the

function and deactivated before return.

NewHeader must fit in the existing Solution Header space. That is, it must not be larger than the MaxLength size
returned when the existing Solution Header is read. To write a header that is larger than the existing maximum size,
use FesfUtil2UpdateHeaderExclusiveWithExtension.

Replaces

IFesfDs:: UpdateHeader

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
5

FesfUtil2UpdateHeaderExclusiveWithExtension

Function
Updates the existing Solution Header of FileToUpdate. Opens the file for exclusive access; the caller must have both

read and write access to the file. NewHeader may be any (non-zero) size, including larger or smaller than the existing

header.

Syntax (C++)

void

FesfUtil2UpdateHeaderExclusiveWithExtension(

 std::wstring_view FileToUpdate,

 const FESF_UTIL2_SOLUTION_HEADER &NewHeader,

 const std::wstring_view & BackupFileTag = L"");

Syntax (C)

DWORD

FesfUtil2UpdateHeaderExclusiveWithExtension_C(

 [in] LPCWSTR FileToUpdate,

 [in] PVOID HeaderBuffer,

 [in] DWORD HeaderLength,

 [inopt] LPCWSTR BackupFileTag);

Parameters

FileToUpdate

Fully qualified path name of file to receive the new header.

NewHeader

Valid instance of a new header to be substituted for the existing one.

BackupFileTag

A tag to use in forming the backup file name. Defaults to an empty string. See remarks section for more

information.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

Requires the caller to have SeRestorePrivilege, SeTakeOwnershipPrivilege, and SeSecurityPrivilege on the system

where the file is located. If these privileges are not already activated, they will be activated by the function and

deactivated before return. Requires the caller to have both read and write access to the file.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
6

This function allows a file to be updated with a Solution Header that is larger than that which will fit in the current file.

To accomplish this, an entirely new file is created with the new header. The name of the new file is the same as the

current file, but with the suffix “_FESF_TEMP_<random-number>” added, where “<random_number>” is a random

string of up to 10 decimal digits. The raw data from the original file is copied to the new file, the original file's

characteristics are propagated to the new file using the Win32 function ReplaceFile, and the original file's security

attributes (DACL and SACL) are propagated to the new file.

If a non-zero-length BackupFileTag is specified by the caller, the name of the backup file will incorporate that tag in

the name. If a name is not specified, the tag "FESF_BACKUP" will be used. The backup file name is used by the Win32

ReplaceFile (which is called by this function). In addition, if the caller specifies a BackupFileTag, the backup file will be

retained on return, even when this function is successful. If a BackupFileTag is not specified, and this function is

successful, the backup file is deleted before returning to the caller.

The name of the backup file is formed by pre-pending the backup tag (either the one passed-in by the caller or the

default value) to the filename portion of the fully qualified file path. The backup tag is separated from the original file

name by a "_" character. For example:

FileToUpdate: C:\Fred\bob.txt

Default backup file name: C:\Fred\FESF_BACKUP_bob.txt

This scheme was devised to avoid clashing with the name of the original file and to make it more likely to preserve the

original file's short name.

Note that the size of the original file name and extension must be short enough to allow:

a) The new file to be created with the “_FESF_TEMP_<random-number>” suffix.

b) The backup file to be created with the backup tag, which defaults to “FESF_BACKUP_”.

Note that, while fully qualified paths on Windows may be up to 32767 characters in length, the maximum length of a

file name plus file extension on NTFS is 255 characters.

Replaces

IFesfDs:: UpdateHeaderWithExtension

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
7

FesfUtil2UpdateHeaderUnsafe Function
Replaces the existing Solution Header on the file indicated by FileToUpdate with the Solution Header provided in

NewHeader. Opens the file "shared" and thus presents a risk of other programs simultaneously accessing (and

possibly updating) the file's header directly via a call to FesfUtil2 or via other ordinary operations by FESF. When

possible, we strongly urge using the function FesfUtil2UpdateHeaderExclusive in preference to this function.

Syntax (C++)

void

FesfUtil2UpdateHeaderUnsafe(std::wstring_view FileToUpdate,

 const FESF_UTIL2_SOLUTION_HEADER &NewHeader);

Syntax (C)

DWORD

FesfUtil2UpdateHeaderUnsafe_C(

 [in] LPCWSTR FileToUpdate,

 [in] PVOID HeaderBuffer,

 [in] DWORD HeaderLength);

Parameters

FileToUpdate

Fully qualified path of file to operate on.

NewHeader

Header to be substituted for the existing header.

Throws

Throws an FEU2Exception if an error is encountered.

Remarks

Requires the caller to have SeRestorePrivilege. If the privilege is not already activated, it will be activated by the

function and deactivated before return.

NewHeader must fit in the existing Solution Header space. That is, it must not be larger than the MaxLength size

returned when the existing Solution Header is read. To write a header that is larger than the existing maximum size,

use FesfUtil2UpdateHeaderExclusiveWithExtension.

This function only supports local files. It can NOT be used to read the header of a file that is accessed via the network.

Replaces

IFesfUtil2:: UpdateHeaderUnsafe and IFesfUtil2:: UpdateHeaderUnsafeFQP

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
8

12.2 FesfUtil2 Classes & Structures
This section describes the classes and structures of FesfUtil2.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e9
9

FESF_UTIL2_SOLUTION_HEADER
This structure is the representation of a FESF solution header.

Methods

Constructors

FESF_UTIL2_SOLUTION_HEADER(uint32_t HeaderSize = 0);

Create a new Solution Header.

FESF_UTIL2_SOLUTION_HEADER(const FESF_UTIL2_SOLUTION_HEADER &Rhs);

Create a new Solution Header as a COPY of the provided input.

FESF_UTIL2_SOLUTION_HEADER(FESF_UTIL2_SOLUTION_HEADER &&Rhs);

Create a new Solution Header with the identical contents (as a MOVE)

SetCurrentLength

void SetCurrentLength(const uint32_t Length);

Sets the size of the header. See notes below.

CurrentLength

uint32_t CurrentLength();

Gets the size of the header. See notes below.

MaxLength

uint32_t MaxLength();

Gets the maximum size of the header. See notes below.

Get

void* Get();

Returns a pointer to the header data. See notes below.

IsValid

bool IsValid();

Returns whether the header is valid.

ReallocateBuffer

void ReallocateBuffer(uint32_t NewSize);

Increases the maximum size available for the header.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

0

Notes

The Solution Header itself is accessed using the .Get method. So, for example, if you successfully call

FesfUtil2ReadHeader as follows:

auto theHeader = FesfUtil2ReadHeader("C:\fred\myfile.txt");

The Solution Header that's been read from the file and returned to you can be accessed by:

theHeader.Get()

In terms of lengths, note that a Solution Header has two "length" values:

.CurrentLength()

This is the currently used/valid length of the solution header.

When a header is copied or written, CurrentLength is the number of bytes written. When a header is read,

CurrentLength is the number of valid bytes in the header.

.MaxLength()

This is the maximum header size that can be written to the associated file without requiring the header to be

extended.

When an FESF_UTIL2_SOLUTION_HEADER is instantiated or reallocated (with the ReallocateBuffer method), the

HeaderSize provided is used to size the allocated buffer and both MaxLength and CurrentLength are initially set to this

size. The CurrentLength can be subsequently updated to less than MaxLength by calling SetCurrentLength().

When a header is read, the header buffer is allocated with MaxLength bytes, and the size of the Solution Header Data

that was actually read is indicated by CurrentLength.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

1

FEU2Exception
This structure is used by FesfUtil2 to describe errors encountered during processing.

The primary purpose of this structure is to convey either a Win32 or, more rarely, an internal NTSTATUS value and its

meaning to the caller.

Methods

Win32Error

Returns a DWORD containing the Win32 Error Value indicating the error that FesfUtil2 encountered during

processing.

NtStatus

Returns a DWORD containing a native, Windows kernel-mode, NTSTATUS value indicating the error that

FesfUtil2 encountered during processing.

IsNativeError

Returns a bool indicating whether the error value being returned is an NTSTATUS (IsNativeError is set to true)

or is a Win32 error (IsNativeError is set to false).

GetMessageString

Returns an std::string with the text of the error message, suitable for direct output or logging. The Win32

error code and (if applicable) the NTSTATUS value are also displayed as part of the output.

what

Returns a pointer to a null-terminated const char string (NOT a wide-character string) with the text of the

error message, suitable for direct output or logging. The Win32 error code and (if applicable) the NTSTATUS

value are also displayed as part of the output. The only difference between the values returned by this and

the GetMessageString() methods is the format of the output. The message text is identical.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

2

13 FESF Stand-Alone Library Function Reference
The functions in this section are implemented by the FESF V2 Stand-Alone library (Fe2Sa.lib).

13.1 About the Stand-Alone Library
The Stand-Alone Library is a supported part of FESF that is provided and maintained by OSR. As such, the code for the

library itself is not to be changed by licensees. On the other hand, the Fe2SaCyrpt utility is part of the FESF Sample

Solution Components and may be used, customized, or adapted by FESF licensees in any way they see fit.

The FESF Stand Along Library was created to provide licensees a supported mechanism to create and access FESF

encrypted files on systems where FESF is not installed. It is not designed to be high performance. Additionally, the

Library is not guaranteed to be inherently thread safe.

13.2 About the FE2Sa Functions
Probably THE key point to keep in mind about the FesfSa functions is that they may be used only on systems where

FESF is not installed (or where it can be unambiguously guaranteed that none of the FESF kernel-mode or user-mode

components are running). Using the FesfSa functions on systems where FESF is active will result in undefined

behaviors, including file corruption.

PLEASE READ THIS: Important Note on the Future Direction of the FESF Stand-Alone Library

As described above, the only supported use of the FESF Stand-Alone Library is on systems where

FESF is not installed.

As part of ongoing efforts to update the FESF architecture, OSR plans to change the FESF Stand-

Alone Library so that its functions will fail (returning an error) on systems on which FESF is

running.

This should have no impact on your product because the Library was never supported for use on

systems where FESF was installed. If, however, your Solution DID make use of the FESF Stand-

Alone Library on systems where FESF was running, this will eventually no longer be possible. We

recommend using FesfUtil2 or some other approach. Please only ever use the FESF Stand-Alone

Library on systems in which FESF is known not to be running.

Given the design patterns implemented by FesfSaEncrypt and FesfSaDecrypt, your stand-alone application’s code will

be responsible for performing the actual encryption and decryption operations on file data. This is in contrast to the

practice when FESF is installed, in which FESF performs all encryption and decryption operations.

Because you will be responsible for implementing the data encryption and decryption functions, it should go without

saying that in order for newly encrypted files to be recognized and accessible by FESF, you must perform encryption

and overall file operations in a way that is compatible with FESF. FESF uses the Microsoft CNG implementation for its

encryption operations. Ensuring that your stand-alone application creates compatible FESF encrypted files is the

responsibility of your application.

For algorithms requiring a fixed block size, we use a value of 256 bytes. This choice is arbitrary. Normally, algorithms

that provide a CBC mode also include a non-secret value known as the initialization vector. This prevents identical

blocks from appearing to be identical in the encrypted file content.

When calling CNG encryption methods that require an initialization vector (IV), FESF generates this from the key

material using a technique adapted from the disk drive field and known as the Encrypted Salt-Sector Initialization

Vector (ESSIV).

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

3

Please refer to the Fe2SaCrypt utility, which is part of the unsupported FESF Sample Solution Components (the

Sample.sln Solution) for an example of implementing an FESF-compatible encryption scheme, including building and

using the ESSIV.

Starting with FESF V2, Fe2SaCrypt uses the open source SymCrypt library. This library is developed and supported by

Microsoft and is the underlying engine used by the Windows CNG Library for both user-mode and kernel-mode

encryption. FESF does not ship with any SymCrypt components, but they are available on GitHub as both source code

and pre-built binaries. SymCrypt supports Windows, Linux, and macOS. We have tested Fe2SaCrypt using the new

Fe2Sa library and SymCrypt (AES/CBC 128) on both Windows and Linux (Ubuntu).

The Fe2SaCrypt source code has both build and implementation comments that can help guide your adaptation of the

example to your specific use.

13.2.1 Building Fe2SaCrypt on Windows
The build procedures for this Fe2SaCrypt (for both Windows and Linux) assume the SymCrypt files have been

downloaded and are available in the standard FESF sample user source code tree.

To build Fe2SaCrypt on Windows, download the zip archive appropriate for the architecture that you're building

(ARM64 or AMD64), extract the inc and dll directories, and locate those directories in the FESF user source tree under

src\user\SymCrypt\Windows.

When properly unzipped, you should have the following with the SymCrypt components:

 src\user\SymCrypt\Windows\<arch>\dll\

 src\user\SymCrypt\Windows\<arch>\inc\

Where <arch> is either “x64” or “arm64”. Note that the build procedure as provided does not look in configuration-

specified subdirectories to differentiate between Release and Debug builds.

13.2.2 Building Fe2SaCrypt on Linux
To build Fe2SaCrypt on Linux, download the tar.gz archive appropriate for the architecture that you're building

(ARM64 or AMD64). Copy it to the src/user/SymCrypt directory on your Linux system (note that, as of this writing, the

SymCrypt library tgz contains files that are symlinks that cannot be copied correctly via Windows File Explorer). Under

the SymCrypt directory, create a directory named "Linux". Extract the contents of the SymCrypt inc and lib directories

from the SymCrypt tar.gz file using the following command:

 tar -xzf x.tar.gz -C Linux ./lib ./inc

 You should get the following with the SymCrypt components:

 src/user/SymCrypt/Linux/lib/

 src/user/SymCrypt/Linux/inc/

 Then build using the supplied makefile.

Note that you will need the contents of the Linux/lib directory in the same directory as your executable (fe2sacrypt)

when you run.

13.2.3 About Building Fe2SaCrypt on Non-Windows Platforms
Please keep in mind that Fe2SaCrypt is supplied by OSR purely as an example. It is part of the FESF unsupported

Sample Solution Components. While OSR is not able to provide assistance for building or using Fe2SaCrypt on non-

Windows platforms, we are always pleased to hear about your experiences (both good and bad) with any of the

sample utilities.

https://github.com/microsoft/SymCrypt
https://github.com/microsoft/SymCrypt/releases

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

4

DecryptCallback function
Receives a block of data read from a FESF encrypted file for decryption.

Syntax

FE_DECRYPT_CALLBACK_FUNCTION DecryptCallback;

bool

DecryptCallback(

 In void *CallbackContext,

 In void *SolutionHeader,

 In uint32_t SolutionHeaderSize,

 In uint64_t FinalSize,

 In void *EncryptedData,

 In uint32_t EncryptedDataSize

)

Parameters

CallbackContext [in]

A buffer containing context data provided to the Decrypt function.

SolutionHeader [in]

A buffer that contains the Solution Header retrieved by FESF from the encrypted file.

SolutionHeaderSize [in]

The size of the buffer pointed to by SolutionHeader, in bytes.

FinalSize [in]

The final size of the decrypted output for the file. Does not change across a single invocation of the Decrypt

function that calls this callback.

EncryptedData [in]

A buffer containing the next block of encrypted data.

EncryptedDataSize [in]

The length of the data to be decrypted and written. Always provided as a multiple of CipherBlockSize, even if

the decrypted contents may be of a different size. See Remarks.

Return value

Returns TRUE if the function successfully processes all the data, FALSE otherwise.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

5

For both Windows and Linux platforms, the errno variable is set to report a specific error code.

Remarks

This callback routine is called to provide encrypted data to an application to allow the application to produce a data

stream that contains unencrypted data.

FESF reads encrypted data blocks from the file and provides them sequentially to the application via this callback. The

callback decrypts the data provided.

The last block in a file may contain data padding as required by some encryption algorithms. Care should be taken to

not write more data to the output stream than is specified by the FinalSize parameter.

If the encryption algorithm requires an Initialization Vector (IV), the application is required to use the same algorithm

that FESF uses to generate a unique IV per cipher block. For chained ciphers such as CBC, the encryption algorithm is

likewise required to implement the same blocking scheme used by FESF. See the section About the Fe2Sa Functions in

this document for the description of these issues. Note that the Fe2SaCrypt sample utility demonstrates how to

implement a compatible IV, encryption, and blocking scheme using the SymCrypt library and AES-128/CBC.

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library Fe2Sa.lib

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

6

EncryptCallback function
Processes a block of data generated by the Encrypt call to encrypt and store a sequential output stream.

Syntax

FE_ENCRYPT_CALLBACK_ROUTINE EncryptCallback;

bool

EncryptCallback(

 In void *CallbackContext,

 In uint64_t FinalSize,

 In void *StreamData,

 In uint32_t StreamDataLength,

 In bool WriteEncrypted

)

Parameters

CallbackContext [in]

A buffer containing context data provided to the Encrypt function.

FinalSize [in]

The final size of the encrypted data stream. The resultant output must be exactly this size to be successfully

recognized by FESF. See Remarks for more details.

StreamData [in]

A buffer containing the unencrypted data to be written. If WriteEncrypted is TRUE, the application receiving

the callback is responsible for encrypting the contents of the data buffer.

StreamDataLength [in]

The length of the data to be written. If WriteEncrypted is TRUE, this will be a multiple of the CipherBlockSize

argument passed to Encrypt.

WriteEncrypted [in]

If TRUE, the contents of the Data buffer must be encrypted before storing the output. If FALSE, Data must be

written without modification. See the Remarks section for more information.

Return value

Returns TRUE if the function successfully processes all the data, FALSE otherwise.

For both Windows and Linux platforms, the errno variable should be set to report a specific error code.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

7

Remarks

This callback routine is called to provide data to an application to allow the application to produce a data stream that

can be interpreted as a valid FESF encrypted file.

If WriteEncrypted is TRUE, the application receiving the callback is responsible for encrypting the supplied Data using

key material that can be derived from the SolutionHeader it previously passed to the Encrypt function. If

WriteEncrypted is TRUE and the data supplied in StreamData is not an integer multiple of the CipherBlockSize the

application receiving the callback is responsible for padding the data appropriately before performing the encryption

operation.

If WriteEncrypted is FALSE, the data supplied in the Data buffer is FESF metadata that must be stored exactly as

supplied from the callback, without any change. These data blocks may not be padded or rounded in size.

Each block of callback data provided to this routine must appear contiguously and the same order in the output

stream as it is provided to the callback.

If the encryption algorithm requires an Initialization Vector (IV), the application is required to use the same algorithm

that FESF uses to generate a unique IV per cipher block. For chained ciphers such as CBC, the encryption algorithm is

likewise required to implement the same blocking scheme used by FESF. See the section About the Fe2Sa Functions in

this document for the description of these issues. Note that the Fe2SaCrypt sample utility demonstrates how to

implement a compatible IV, encryption, and blocking scheme using the SymCrypt library and AES-128/CBC.

The FinalSize argument defines the ultimate size of the stream, which may be slightly larger than the number of data

bytes written to the stream. This argument will be the same each time Callback is called for a given call to Encrypt.

Failure to write the data in the correct order, or failure to make sure that the file is exactly FinalSize bytes long will

result in an inconsistent or invalid FESF encrypted file.

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library Fe2Sa.lib

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

8

FesfSaDecrypt function
Decrypts a valid FESF encrypted file using a caller-provided callback.

Syntax

bool

FesfSaDecrypt(

 In const wchar_t *Path,

 In FE_DECRYPT_CALLBACK_ROUTINE CallbackRoutine

 In void *CallbackContext,

)

Parameters

Path [in]

A string containing the path of a file to decrypt. Refer to the Remarks section.

CallbackRoutine [in]

A pointer to a caller supplied DecryptCallback routine. Refer to the Remarks section.

CallbackContext [in]

A pointer to a caller-provided context structure passed to every invocation of the provided CallbackRoutine.

Return value

Returns TRUE if the function successfully processes all the data, FALSE otherwise.

For both Linux and Windows platforms the errno variable is set.

Remarks

This function provides FESF with a path describing a file to be decrypted. FESF calls the application provided Callback

function with data blocks from the file for the callback to decrypt. FESF does not call the Callback function with any

metadata (FESF metadata or the Solution Header Data).

The file described by Path must be a valid FESF encrypted file. If it is not, an error is returned. If FESF cannot open the

file described by Path for exclusive access, an error is returned.

The callback is called synchronously with respect to this function. That is, the application’s call to Decrypt returns

when all data has been supplied by FESF to the callback.

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library Fe2Sa.lib

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
0

9

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

0

FesfSaEncrypt function
Enables an application to create an FESF encrypted data stream (a file, a series of network messages, etc.) from a

plaintext file.

Syntax

bool

FesfSaEncrypt(

 In const wchar_t *Path,

 In FE_ENCRYPT_WRITER CallbackRoutine

 In void *CallbackContext,

 In void *SolutionHeader,

 In uint32_t SolutionHeaderSize,

 In uint32_t CipherBlockSize,

)

Parameters

Path [in]

A string containing the path of a file to encrypt. Refer to the Remarks section.

CallbackRoutine [in]

A pointer to a caller supplied EncryptCallback routine. Encrypt calls this function for each segment of data in

the FESF encrypted data stream.

CallbackContext [in]

A pointer to a caller-provided context structure passed to every invocation of the provided callback.

SolutionHeader [in]

A buffer that contains the Solution Header that FESF will include in its metadata in the process of encrypting

the file.

SolutionHeaderSize [in]

The size of the buffer pointed to by SolutionHeader, in bytes.

CipherBlockSize [in]

The block size of the encryption algorithm used by the Callback function.

Return value

Returns TRUE if the function successfully processes all the data, FALSE otherwise.

For both Windows and Linux platforms, the errno variable is set.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

1

Remarks

This function provides the caller-supplied EncryptCallback with a stream of sequential data that will produce a valid

FESF encrypted file. The Callback will be called multiple times until all file data has been supplied. See the description

of EncryptCallback for more information.

If FESF cannot open the file described by Path for exclusive access, an error is returned.

The provided SolutionHeader is identical to the PolHeaderData buffer returned by the Solution Policy DLL from FESF’s

PolGetKeyNewFile callback.

The callback is called synchronously with respect to this function. That is, the application’s call to Encrypt returns

when all data has been supplied by FESF to the callback.

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library Fe2Sa.lib

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

2

FesfSaIsFileEncrypted function
Determines if a given file is stored in FESF encrypted format.

Syntax

bool

FesfSaIsFileEncrypted(

 _In_const wchar_t *Path,

 Out bool *Encrypted

)

Parameters

Path [in]

A string containing the path of a file to check. This must be a fully qualified path.

Encrypted [out, retval]

A pointer to a bool that will receive the result on success. Set to TRUE if the file indicated by Path is in FESF

encrypted format.

Return value

Returns TRUE if the indicated file is recognized as being encrypted by FESF, FALSE otherwise.

For Windows and Linux platforms, the errno variable should be set to report a specific error code.

Remarks

Path is interpreted as a fully qualified path, suitable for direct evaluation.

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library Fe2Sa.lib

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

3

FesfSaReadHeader function
Reads the Application Header.

Syntax

bool

FesfSaReadHeader(

 In const wchar_t *Path,

 _Inout_opt_bytecount_(SolutionHeaderSize) void * SolutionHeader,

 In uint32_t SolutionHeaderSize,

 Out uint32_t *BytesRead

)

Parameters

Path [in]

A string containing the path of a file whose solution header should be read.

SolutionHeader [out, retval]

A caller allocated buffer to receive the solution header.

SolutionHeaderSize [in]

The size of the caller allocated buffer in bytes.

BytesRead [out]

A pointer to an integer which will receive the size of the solution header.

Return value

Returns TRUE if the header was successfully read, FALSE otherwise.

For Windows and Linux platforms, the errno variable should be set to report a specific error code.

Remarks

Path is interpreted as a fully qualified path, suitable for direct evaluation.

If the supplied buffer is too small then FALSE is returned, but BytesRead is set to the size of the solution header in the

file. Additionally, in this situation errno is set to be –E2BIG.

In all other error cases BytesRead is set to be 0XFFFFFF.

Requirements

Software version FESF Version 1.1 (added)

Supported FESF State FESF Not Installed ONLY

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

4

Windows Library Fe2Sa.lib

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

5

FesfSaWriteHeader function
Writes the Application Header.

Syntax

bool

FesfSaWriteHeader(_In_ const wchar_t *Path,

 In void *SolutionHeader,

 In uint32_t SolutionHeaderSize

)

Parameters

Path [in]

A string containing the path of a file whose solution header should be written.

SolutionHeader [in]

A buffer containing the header.

SolutionHeaderSize [in]

The size of the buffer in bytes.

Return value

Returns TRUE if the header was successfully written, FALSE otherwise.

For both Windows and Linux platforms, the errno variable should be set to report a specific error code.

Remarks

Path is interpreted as a fully qualified path, suitable for direct evaluation.

If the new Solution Header is larger than the current one and there is no room to accommodate it in the file, then this

call fails.

Requirements

Software version FESF Version 1.1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library Fe2Sa.lib

Linux Library Libfe2sa.a

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

6

14 FESF Policy Data Structures
This section describes the FESF Policy data structures.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

7

FE2_POLICY_ALGORITHM structure
The FE2_POLICY_ALGORITHM structure specifies the encryption algorithm and associated information. This

information is used by FESF to call CNG.

Syntax

typedef struct _FE2_POLICY_ALGORITHM {

 //

 // A string that uniquely identifies this algorithm to the FESF

 // Service.

 //

 LPCWSTR PolUniqueAlgorithmId;

 //

 // Passed as the pszAlgId parameter to

 // BCryptOpenAlgorithmProvider

 //

 LPCWSTR CNGAlgorithmIdentifier;

 //

 // Passed as the pszImplementation parameter to

 // BCryptOpenAlgorithmProvider

 //

 LPCWSTR CNGAlgorithmImplementation;

 bool UseESSIV;

 FE2_POLICY_ALGORITHM_VERSION FesfPolicyAlgorithmVersion;

 FE2_POLICY_CRYPTO_TYPE CryptoType;

 FE2_POLICY_KEY_LENGTH KeyLength;

} FE2_POLICY_ALGORITHM;

Members

PolUniqueAlgorithmId

A pointer to a Solution Policy DLL defined null-terminated constant wide character string, that will be used to

identify this particular algorithm and specified properties. The Solution Policy DLL provides this string as an

output from its PolGetKeyNewFile and PolGetKeyFromHeader callback functions.

CNGAlgorithmIdentifier

This value is ignored except for custom cryptographic algorithm providers, where it is pszAlgId parameter to

the CNG function BCryptOpenAlgorithmProvider.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

8

CNGAlgorithmImplementation

This value is ignored except for custom cryptographic algorithm providers, where it is pszImplementation

parameter to the CNG function BCryptOpenAlgorithmProvider.

UseESSIV

This value is ignored except for custom cryptographic algorithm providers. See Remarks for more

information.

FesfPolicyAlgorithmVersion

Specify FE2_POLICY_ALGORITHM_VERSION::VERSION2. No other values are currently supported.

CryptoType

Specify one of the following values to select the cryptographic algorithm to use:

FE2_POLICY_CRYPTO_TYPE::AES_CBC_ESSIV – This selects the “standard” FESF encryption algorithm

that has been historically used by almost all FESF licensees.

FE2_POLICY_CRYPTO_TYPE::AES_XTS – This selects AES with XTS mode; This option is not currently

supported, but will be implemented in a later release of FESF.

FE2_POLICY_CRYPTO_TYPE::CUSTOM – This selects a custom-developed crypto algorithm provider.

KeyLength

Specify one of the following values:

FE2_POLICY_KEY_LENGTH::BITS_128 (this value is not valid with AES_XTS)

FE2_POLICY_KEY_LENGTH::BITS_256

FE2_POLICY_KEY_LENGTH::BITS_512 (this value is not valid with AES_CBC_ESSIV)

For AES_XTS, this length specifies the size of the key PAIR that’s being used. The pair of keys is provided by

the Solution Policy DLL as a single concatenated value. Thus, for XTS mode, specifying BITS_256 indicates that

two (concatenated) 128 bit keys will be supplied by the Solution Policy DLL in a single 256 bit buffer.

Remarks

Important notes for developers/users of custom cryptographic algorithm providers (only):

o FESF assumes the cryptographic block size is 16 bytes (as it is in AES)

o FESF uses an encryption block size of 256 bytes; This is the interval at which we compute a new offset

and (if specified) ESSIV.

o When using a custom cryptographic algorithm, if you set UseESSIV to true FESF will compute the 16-byte

ESSIV (as described elsewhere in this document) and pass a pointer to it to your crypto algorithm (as the

pbIV and cbIV) on calls to BCryptEncrypt and BCryptDecrypt. If you set UseESSIV to false FESF will pass a

pointer to a 16-byte buffer containing the byte offset of the block being encrypted to your crypto

algorithm (as the pbIV and cbIV) on calls to BCryptEncrypt and BCryptDecrypt. These two options should

allow you to perform whatever type of encryption you need.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
1

9

See Also

Requirements

Software version FESF V1 (and later)

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

0

FE2_POLICY_CONFIG structure
The FE2_POLICY_CONFIG structure specifies the selected configuration options and callbacks for the Solution Policy

DLL.

Syntax

typedef struct _FE2_POLICY_CONFIG {

 DWORD VersionMajor;

 DWORD VersionMinor;

 DWORD Length;

 struct {

 bool Enable;

 bool mbf1;

 bool mbf2;

 bool mbf3;

 } AccessCache;

 struct {

 bool res1;

 bool mbf1;

 bool mbf2;

 bool mbf3;

 } NetworkBehavior;

 //

 // Maximum size of the Solution Header used by your

 // Solution.

 //

 DWORD SolutionHeaderMaximumSize;

 POL_GET_POLICY_NEW_FILE *PolGetPolicyNewFile;

 POL_GET_KEY_NEW_FILE_EX *PolGetKeyNewFile;

 POL_GET_POLICY_EXISTING_FILE *PolGetPolicyExistingFile;

 POL_GET_POLICY_DIRECTORY_LISTING *PolGetPolicyDirectoryListing;

 POL_GET_KEY_FROM_HEADER *PolGetKeyFromHeader;

 //

 // Optional. If not specified, all renames are approved.

 //

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

1

 POL_APPROVE_RENAME *PolApproveRename;

 //

 // Optional. If not specified, all requests to create links

 // are approved.

 //

 POL_APPROVE_CREATE_LINK *PolApproveCreateLink;

 //

 // Optional. If not specified, no action is taken.

 //

 POL_REPORT_LAST_HANDLE_CLOSED *PolReportLastHandleClosed;

 //

 // Optional. If not specified, FESF attaches to all volumes

 //

 POL_ATTACH_VOLUME *PolAttachVolume;

 //

 // Optional - Network locking

 //

 POL_GET_LOCK_ROUNDING *PolGetLockRounding;

 //

 // Required

 //

 POL_FREE_HEADER *PolFreeHeader;

 POL_FREE_KEY *PolFreeKey;

 //

 // Optional. If not specified, no action is taken

 //

 POL_UNINIT *PolUnInit;

 //

 // Virtualization Filters we need to ignore and their Virtualized Directories

 //

 DWORD VirtualizationFilterCount;

 LPCWSTR *VirtualizationFilters;

 LPCWSTR *VirtualizationDirs;

 //

 // The crypto algorithm(s) to use

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

2

 //

 // Note that there is a pre-configured maximum number of algos that

 // are supported by FESF V2. Changing this requires changing FESF V2

 // kernel-mode code to match.

 //

 DWORD AlgorithmsCount;

 FE2_POLICY_ALGORITHM Algorithm[FE2_CRYPT_MAX_SUPPORTED_ALGOS];

} FE2_POLICY_CONFIG;

Members

VersionMajor

The major version of the FESF Policy API supported by the Solution Policy DLL. This must be

FE_POLICY_VERSION_MAJOR.

VersionMinor

The minor version of the FESF Policy API supported by the Solution Policy DLL. This must be

FE_POLICY_VERSION_MINOR.

Length

The length in bytes of the FE2_POLICY_CONFIG structure.

AccessCache

Enable

Set to TRUE to enable FESF Policy Caching. Otherwise, set to FALSE. Note that after setting this to an initial

value via this structure, a Solution can change FESF’s Policy Caching behavior using the FESF support function

Fe2UtilSetPolciyCacheState.

NetworkBehavior

(Currently unused; Set to zero.)

SolutionHeaderMaximumSize

Maximum size (in bytes) of your Solution Header Data that FESF should expect to encounter. Fe2Policy uses

the value you provide here to size the buffers it pre-allocates for communications with the kernel-mode FESF

components. Setting this value to be arbitrarily large will waste (real, physical) memory on customer

machines. Setting this value too small will result in a larger Solution Header you provide being rejected

(resulting in unpredictable application behavior). See elsewhere in this document for a more detailed

description of how this value is used.

PolGetPolicyNewFile

A pointer to the Solution Policy DLL's PolGetPolicyNewFile callback function.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

3

PolGetKeyNewFile

A pointer to the Solution Policy DLL's PolGetKeyNewFile callback function.

PolGetPolicyExistingFile

A pointer to the Solution Policy DLL's PolGetPolicyExistingFile callback function.

PolGetPolicyDirectoryListing

A pointer to the Solution Policy DLL's PolGetPolicyDirectoryListing callback function

PolGetKeyFromHeader

A pointer to the Solution Policy DLL's PolGetKeyFromHeader callback function.

PolApproveRename

A pointer to the Solution Policy DLL's PolApproveRename callback function.

PolApproveCreateLink

A pointer to the Solution Policy DLL's PolApproveCreateLink callback function.

PolReportLastHandleClosed

A pointer to the Solution Policy DLL's PolReportLastHandleClosed callback function

PolAttachVolume

An optional pointer to the Solution Policy DLL's PolAttachVolume callback function

PolGetLockRounding

An optional pointer to the Solution Policy DLL's PolGetLockRounding callback function

PolFreeHeader

A pointer to the Solution Policy DLL's PolFreeHeader callback function.

PolFreeKey

A pointer to the Solution Policy DLL's PolFreeKey callback function.

PolUnInit

A pointer to the Solution Policy DLL's PolUnInit callback function.

AlgorithmsCount

A count of entries in the vector of the Algorithms member of this structure.

Algorithm

A vector of FE2_POLICY_ALGORITHM structures, each of which describes an encryption algorithm that the

Solution Policy DLL will use. Up to FE2_CRYPT_MAX_SUPPORTED_ALGOS (which is currently 6, but is subject

to change) may be defined by a Solution Policy DLL.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

4

Remarks

See Also

Requirements

Software version FESF V1 (or later)

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

5

FE_POLICY_PATH_INFORMATION structure
The FE_POLICY_PATH_INFORMATION structure specifies the path name for a file being accessed by FESF.

Syntax

typedef struct _FE_POLICY_PATH_INFORMATION {

 LPCWSTR RequestorSID;

 LPCWSTR RelativePath;

 DWORD PathFlags;

 UUID VolumeGuid;

 Union {

 LPCWSTR ServerAndShare;

 LPCWSTR ShadowVolumeName;

 };

} FE_POLICY_PATH_INFORMATION;

Members

RequestorSID

A string containing the Security ID (SID) associated with the security principal performing the file operation.

RelativePath

A path name (including file name), starting with backslash. For local volumes, the path is relative to the

volume GUID. For network volumes, the path is relative to the share.

PathFlags

A bitmask containing values describing the location of the path being provided:

FE_POLICY_PATH_NAME_NOT_NORMALIZED

Indicates that the path information provided has NOT

been normalized in format. This is a rare occurrence and

relates only to some specific network operations.

FE_POLICY_PATH_TARGET_NAME_INVALID Indicates that the target name could not be established

(typically, as a result of a rename across a directory

junction point). This flag is only set for

PolApproveCreateLink and PolApproveRename callbacks.

FE_POLICY_PATH_NAME_BYPASS Indicates that the file name (source or target) has been

detected as being in a “bypass” region. A bypass region is

one in which file opens are always raw (because of

interoperability issues). For example, files used to boot

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

6

the system might be in a bypass region. The Solution

Policy DLL is never involved in Policy determination for

BYPASS files, but a rename of a file from or to a “bypass”

region may be of interest to a Solution Policy DLL.

FE_POLICY_PATH_FILE_DEHYDRATED Indicates that a file is being recalled from a Cloud
Storage provider (such as OneDrive). This flag will only be
set for the PolGetPolicyExistingFIle callback. See the
description of that callback for more information.

VolumeGuid

For network files, this field contains the GUID FE_NETWORK_GUID.

For shadow volumes, this field contains the GUID FE_SHADOW_VOLUME_GUID.

For local (that is, non-network) volumes, this field contains the GUID representing the local volume on which

the file resides. The drive letter that this GUID represents can be translated and combined with the contents

of the RelativePath field using the FESF Utility Library function GetFullyQualifiedLocalPath. The result will be

a traditional Windows fully qualified path name.

ServerAndShare

The name of the server and share. The UNC file name can be derived by appending the RelativePath to the

ServerAndShare.

Only valid if VolumeGuid is FE_NETWORK_GUID.

ShadowVolumeName

The “device name” of the shadow volume. A UNC file name can be derived by appending RelativePath to the

ShadowVolumeName and prepending the whole with \\?\GlobalRoot.

Only valid if VolumeGuid is FE_SHADOW_VOLUME_GUID.

Remarks

The SID value passed in the RequestorSID field should be used in preference to retrieving the SID from the thread by

calling FesfUtil2GetSidForThread (qv), thereby avoiding a rare situation in which the SID returned by FesfUtil2 is

wrong. This field is populated for create operations, including PolGetPolicyNewFIle, PolGetPolicyExistingFile, and

PolApproveTransactedOpen.

See Also

Requirements

Software version FESF V1 (or later)

Header Fe2PolDllApi.h

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

7

FE_POLICY_VOLUME_INFORMATION structure
The FE_POLICY_VOLUME_INFORMATION structure information about a volume or network share that is being

presented to the Solution Policy DLL in the AttachVolume callback.

Syntax

typedef struct _FE_POLICY_VOLUME_INFORMATION {

 ///

 /// @brief The volumes (kernel-mode) device name

 /// Typically of the form "\Device\HarddiskVolume5"

 ///

 PCWSTR DeviceName;

 ///

 /// @brief Volume's Device Object flags, copied directly from

 /// the DEVICE_OBJECT structure's Flags field.

 ///

 DWORD DeviceFlags;

 ///

 /// @brief Volume's Device Object characteristics, copied

 /// directly from the DEVICE_OBJECT's Characteristics

 /// field.

 ///

 DWORD DeviceCharacteristics;

 ///

 /// @brief Volume Device Object device type, copied directly

 /// from the DEVICE_OBJECT's DeviceType field.

 ///

 DWORD VolumeDeviceType;

 ///

 /// @brief Volume's file system type, as described by the

 /// FLT_FILESYSTEM_TYPE enumeration

 ///

 DWORD VolumeFilesystemType;

 ///

 /// @brief The Volume Label

 ///

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

8

 LPCWSTR VolumeLabel;

} FE_POLICY_VOLUME_INFORMATION;

Members

DeviceName

Pointer to a wide-character string containing the volume’s (kernel) device name – typically of the

form “\Device\HarddiskVolume5”. For network shares this name is of the form “\\Server\Share”.

DeviceFlags

The volume’s Device Object flags, copied directly from the DEVICE_OBJECT structure’s Flags field.

For network shares, this field will be zero and should be disregarded.

DeviceCharacteristics

The volume’s Device Object characteristics, copied directly from the DEVICE_OBJECT structure’s

Characteristics field. For network shares, this field will be zero and should be disregarded.

VolumeDeviceType

The volume’s Device Object device type, copied directly from the DEVICE_OBJECT structure’s

DeviceType field.

VolumeFilesystemType

The volume’s file system type, as described by the FLT_FILESYSTEM_TYPE enumeration.

VolumeLabel

Pointer to a wide-character string containing the volume’s label, as read from the disk. Note this field

is not used for network shares or shadow volumes.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
2

9

15 FESF and Support for Cloud Storage
Since its earliest design phases, one of the primary goals for FESF has been “interoperability.” Webster’s New World

College Dictionary (4th Edition) as cited by collinsdictionary.com defines interoperability as

the ability of a system or component to function effectively with other systems

or components.

Obviously, we (OSR and FESF Licensees) only control one side of the interoperability equation. This is important to

recognize, because there’s literally no guarantee at all about the behaviors, quality, or even the basic engineering

soundness of the components with which FESF might seek to interoperate.

In this document, we’ll briefly explore the vectors of interoperability. We’ll then describe OSR’s policies with respect

to FESF interoperability, and our stance on support for interoperability issues. Because they are so important, we’ll

focus separately on some of the issues raised by Cloud Storage Providers like OneDrive, Dropbox, and Box Sync.

15.1 Why Interoperability Is Complex
FESF for Windows is implemented as a set of Windows File System Minifilters. These filters instantiate above

Windows File Systems and intercept traffic on its way to and from those File Systems. More specifically, FESF uses an

exceptionally complex type of Minifilter referred to as an Isolation Minifilter. This is what allows FESF to provide

simultaneous decrypted and raw views of a file.

When we think about interoperability here at OSR, we typically consider four distinct areas of operation:

• The ability of ordinary (user-mode) applications to perform file operations “as usual”, using the file systems

that FESF is filtering. This includes FESF providing encryption/decryption of file data transparently, based on

policies defined by the Solution. Note that this doesn’t only include supporting read and write, however; It

also includes other aspects, such as support for corrected file lengths in directory and attribute queries.

• The ability of FESF to work across multiple, different, versions of the Windows operating system.

• The ability of FESF to interoperate with standard Windows components, including Microsoft-developed File

Systems and File System Minifilters.

• The ability of FESF to interoperate with non-Microsoft developed components that implement features and

functionality similar to file systems, implement actual unique file systems, or that impact a standard

Microsoft file system. These are most typically Windows File System Filters and File System Minifilters

developed by vendors. This category includes, for example, non-Microsoft developed antivirus products and

non-Microsoft developed cloud storage products.

File System interoperability is sufficiently complex that the only way to know if a given set of products is interoperable

is to try them and see if they all work together. A proof point for this is that for the past 15 years or so Microsoft has

hosted regular “Plugfests.” According to the official Microsoft invitation, the goal of these events is:

[T]o help you prepare your file system minifilter, network filter,

or boot encryption driver for the next version of Windows by performing interoperability

testing with other products.

An OSR engineering team regularly attends these events along with teams from more than 50 other software vendors

worldwide and Microsoft product teams. During the five days that Plugfest lasts, our team works collaboratively with

other teams to ensure our products work together and with the latest version of Windows. When interoperability

problems are discovered, engineering teams from both companies are present to identify and solve them.

https://www.osr.com/nt-insider/2017-issue2/introduction-standard-isolation-minifilters/

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

0

Still, serious interoperability problems between Windows and File System components built by first-tier vendors are

common. For example, consider the serious problems caused by the April 2019 Monthly Rollup (KB4493472) for

many big AntiVirus vendors (including Sophos, McAfee, Avira, Avast, ArcaBit and others).

Why is File System interoperability so complex? What can we do about it? Those are the topics we’ll address in the

remainder of this document.

15.1.1 Unwritten Rules and Many Permutations
It may surprise you to learn that most of the rules for creating interoperable File System Minifilters are unwritten,

ridiculously complex, and are constantly changing. This even includes application interoperability. The result is FESF

doesn’t achieve any of these categories of interoperability automatically. There’s work involved for every, single,

release.

This is true, even though we here at OSR helped originate the filtering approach used by modern File System Filters

and Minifilters. We pioneered the development of “same stack” filtering back in the 1990’s. Microsoft officially

endorsed this approach starting in the mid-2000’s, and it is the approach that they currently recommend. The result

has been dramatically increased interoperability, across the whole ecosystem.

Even when “same stack” filtering is used, however, the work involved to achieve interoperability can be daunting.

While an application reading an encrypted file and being presented with decrypted data might seem reasonably

straight-forward, supporting even this simple operation can involve stunningly complex interactions with the I/O

Subsystem, the Memory Manager, the Cache Manager, and the underlying file system.

The case above becomes even more complicated when the differing behavior of various Windows versions are added

into the mix.

Then consider the differences that occur due to the (multiple different versions of) underlying Microsoft file systems.

Then add into the mix the multiple Microsoft-developed File System Minifilters that ship with each version of

Windows.

And finally, don’t forget to account for the unique behaviors introduced by any coexisting third-party products, such

as antivirus filters, backup filters, license managers, hierarchical storage subsystems, etc., each of which can vary from

release to release.

15.1.2 Ever Changing Rules of the Game
Another issue that makes OS version interoperability and Microsoft interoperability so difficult is that the rules, and

the interfaces, constantly change. And not just in small ways.

For example, Microsoft’s Cloud Filter File System Minifilter suddenly started using an Extra Create Parameter with the

ID GUID_ECP_ATOMIC_CREATE. This ECP was introduced in Windows 10 RS1 or RS2 but wasn’t used by OneDrive

until sometime during RS4. And even when they started using it, the feature was never meaningfully documented.

So, as FESF developers, we’re forced to wait to see how this feature is used in the real world. The result? An

interoperability problem until we can “catch up” to Microsoft’s implementation changes.

15.1.3 Third Parties Doing Whatever They Want
File system Minifilters can be very simple to write. However, File System Minifilters are particularly difficult to write

correctly. This is because many of the interactions that they require with the file systems are entirely undocumented

and only learnable through experience. So, not even every Windows kernel mode software engineer has a grasp of

the complexity of this field.

https://arstechnica.com/gadgets/2019/04/latest-windows-patch-having-problems-with-a-growing-number-of-anti-virus-software/

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

1

Because of the degree of specialization that’s inherent in the Windows File System space, it is a mistake to assume

that software packages authored by large, successful, and/or reputable companies are reliable, well-written, or

automatically likely to be interoperable. Corporate success or even engineering competence in other specialties is

absolutely no indicator of interoperability in this space. There’s a cloud storage solution built by a major vendor that

is built upon a framework that is well-known within the Windows File System community to be “less than reliable.”

This software doesn’t work with FESF, and unless the underlying framework is dramatically changed (or the software

is re-written) it will never work properly with FESF.

When you combine these factors with the fact that there is no “quality gate” that a third party must pass to be

allowed to ship their product, the result is a lot of very poorly implemented Minifilters. These Minifilters show their

poor engineering by breaking things in the system. Like FESF.

15.1.4 Applications Do Very Silly Things
There is no limit to the strange behaviors that applications undertake. And, when they’re doing regular reads and

writes to a local disk, and there’s no encryption or decryption (Isolation) involved, those behaviors rarely have much

noticeable impact. But add Isolation into the mix? There are certain behaviors that result in problems that are simply

irreconcilable.

During the FESF V1.5 cycle, we received reports of an application that, quite literally, opens a file over the network for

sequential access and writes 3 bytes at a time. Does that sound silly to you? It sure sounds silly to us. Want even

sillier? This application also opens the file with shared read permissions, allowing OTHER applications to

simultaneously open the file for read access.

So, the user writes 3 bytes. We need to encrypt an entire block, so we need to read it from the server. There’s

somebody on another system somewhere who also opens the file, but for read access and they need their updates,

so we write the encrypted block back to the server. And we do this every time the application writes three bytes.

This access pattern results in “less than optimal” (cough) performance by FESF. Surprised that this app gets bad

performance? We weren’t. We still don’t know how to fix this.

15.1.5 Windows Versions Constantly Change
A final factor that adds to the complexity of the interoperability problem is that Windows itself is almost never the

same thing twice. Because of “Windows as a service” the version of Windows 11 24H2 (for example) that you

download today is probably not the same as the version of Windows 11 24H2 that you downloaded last week. And

the changes aren’t necessarily subtle. We’ve seen major changes in how, for example, OneDrive works within a given

version of Windows.

This makes it difficult for all of us to reproduce problems. It can make it hard for you to repro problems reported by

your customer sites; It can be hard for us to repro problems that you report to us.

We see this, particularly, when preparing for major upgrades of Windows… say, from 1809 to 19H1. Thankfully,

Microsoft has at least returned to the practice of designating releases as “Release Candidates.” But even once a

release becomes “final” it continues to change. This is what makes planning to support these upgrades so difficult.

We can test with, for example, the release of 20H2 that’s available from Microsoft today. But there’s no guarantee at

all that this release will behave the same as next week’s release of 20H2 – And this is true both before and after 20H2

is officially released.

15.1.6 Third Party Software Versions Constantly Change
Given that “Test in Production” is all the rage these days, constant version churn isn’t restricted just to Microsoft

components. We’ve seen third party code, both applications and File System Minifilters, change both dramatically

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

2

and sometime frequently. The fact that the name of a third-party component hasn’t changed doesn’t necessarily

mean its internal components or implementation mechanisms are the same.

Of course, this just serves to further complicate interoperability and repro scenarios.

Prior to the release of a recent version of FESF, we did very thorough testing with a specific Cloud Storage Provider.

We were happy to know that FESF was fully interoperable. Imagine our surprise, some months later, when we got a

problem report saying that FESF didn’t work at all with this same package. We did some quick exploration and

discovered (surprise!) that the mechanism the product used to store and retrieve files from the cloud had completely

changed.

15.2 OSR’s Approach to Interoperability for FESF
At this point, I hope we’ve made clear the fact that when it comes to File System Minifilters, doing good engineering

and playing by the rules is not enough to ensure interoperability. There are too many variables at play, those

variables are constantly changing, “the rules” aren’t clear and they’re not well-understood by all the players. Plus,

there exist all manner of File System Minifilters and applications that behave pretty much however they want.

The result is that interoperability problems will show up. They are an inherent part of developing products in this

space. We just must live with this reality. That’s the hard truth.

So, is all lost? What do we do?

After 30 years of working in this space, here at OSR we’ve come up with some strategies. And we use these strategies

to guide our FESF design, development, and support activities.

15.2.1 Recognize Interoperability Problems as a Fact of Life
The first step to solving a problem is recognizing that it exists. We’ve just covered this. There will always be

interoperability problems. These problems are not (usually) the result of bad design or engineering within FESF. They

aren’t even usually the result of bad design or engineering of the product with which FESF is attempting to

interoperate. Interoperability problems are simply an inherent part of creating File System Isolation Minifilters.

Therefore, you should do what you can to set your customers’ expectations appropriately.

Also, keep in mind that when customers report “everything was working until I installed your product”, it does not

necessarily mean that there’s a problem in FESF. It is at least equally likely that some other product (the customer’s

antivirus or cloud filter or online backup program) is the component that’s failing. Your support teams might consider

explaining this to customers.

Recommended Strategy: Establish customer expectations that interoperability problems may occur. When you DO

have an interoperability issue, get us the bug report as soon as you can along with all the data that you can provide.

15.2.2 Collect Good Data
When a problem does occur, we need good data with which to work so we can fix the problem expeditiously. We

need to know the specific versions of the OS, including updates. We need to know everything that’s running on the

systems where the problem is being observed, and the versions of any third-party file system related products.

Also, we will always need problems described to us in terms of observed and expected behaviors at the Windows file

system level. It will almost never be enough to say, “we have a client who can’t copy a file to a share on a server

where FESF on the server is set to encrypt the file.” Of course, if that’s all you have, we’ll take it. But what we really

need is an analysis of the behavior. What particular file system operations are failing? What errors are reported? A

ProcMon trace can go a long way towards collecting this information, as can FESF V2 trace data (described elsewhere

in this document).

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

3

We usually will also need one or more Windows crash dumps taken when the problem is being experienced. This has

been, is now, and will always be the gold standard for documentation. Remember, when providing crash dumps, we

need either full or kernel dumps. Please do not send us mini-dumps (also called “summary” dumps). They are not

helpful to use in diagnosing the root cause of a problem.

Recommended Strategy: When you experience an interoperability issue, collect as much relevant data for us as you

can up front. Always send us a description of the behaviors you’re seeing at the Windows file system level. Send us

multiple crash dumps.

15.2.3 We Put Windows First
Given the vast array of potential products with which FESF could be used, and the widely varying quality of those

products, we’ve developed some very clear priorities.

Here at OSR, we always prioritize supporting FESF interoperability with supported versions of Windows, and the

applications that are provided in-box with those versions of Windows. This is now, and always will be, our number

one priority.

If you have a Windows interoperability problem, be sure to get us the specific Windows versions involved. We will do

our best to ensure a resolution is included in the next release of FESF.

When we receive a problem report involving interoperability with a third-party product, we do a preliminary triage,

reviewing the data that’s submitted with the case. We spend a few hours trying to see if we can understand the issue

and, assuming we do, we then look to see if there’s a reasonably quick fix. If we can’t understand the issue in the

allotted time, or there’s not a reasonably quick fix evident, we put the problem aside and handle it on a “time

available” basis.

While we’re pleased to receive problem reports about interoperability problems involving third-party products, our

work to resolve these problems will always be given a lower priority than a Microsoft product that ships with a

supported version of Windows. And we absolutely do not guarantee that we will fix every reported third-party

interoperability problem.

Of course, we understand that sometimes you’ll have third party interoperability issues that must be fixed, and

sometimes you’ll have such an issue that must also be fixed quickly. In such cases let us know. We can arrange to

work with you to prioritize the problem appropriately, including even support at a critical level. Because such

escalations are not part of our Maintenance and Support service, there will be added cost involved in such

escalations.

Recommended Strategy: When you have a Windows interoperability problem, be sure to get us the specific

version(s) of Windows involved. We’ll automatically prioritize the issue. When you contact us about an

interoperability problem concerning a non-Microsoft component, get us as much data as possible when the initial

problem is reported. Expect that, unless our initial triage yields a clear problem and solution, we will handle this on a

“time available” basis. If interoperating with this third-party software is critical to your company, let us know. We can

usually arrange to escalate an issue at an additional cost on a per-incident basis.

15.2.4 File a Bug on the OTHER Product
In many cases, regardless of the quality of the third-party product involved, the only way we can solve an

interoperability problem with a third-party product is by working collaboratively with the third-party to solve the

issue. This is what we do at Plugfest, as described previously. Between Plugfests (or when the other company

doesn’t attend Plugfest) working collaboratively typically entails us arranging a conference call with the third-party’s

development team. This collaboration may ultimately result in the third-party changing their product, OSR changing

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

4

the way FESF works (due to a discovered problem or to accommodate the way the third-party product works), or a

combination of these things.

Before we can do this, we will need you or your customer to file a detailed problem report with the third-party

product’s vendor. Please pass along the case number of this problem report, and any associated case notes.

Because we’ve been working in the Windows file system field for such a long time, we often have contacts at third-

party companies where interoperability problems arise. We’ve had very good luck working with vendors, world-wide,

to collaboratively solve problems that are reported to us in this way.

Recommended Strategy: When you report an interoperability problem involving a third-party product to us, always

file a bug on the third-party’s product and get us the case number. Also get us any other supporting information that

you can provide.

15.3 FESF Interoperability with Cloud Storage Products
Interoperability between FESF and Cloud Storage products, such as OneDrive and Dropbox, is unique enough that it

warrants its own section of this document. While everything we’ve mentioned in the previous sections applies here,

there are additional concerns that are solely relevant to Cloud Storage products that need to be discussed.

15.3.1 Interoperability “Levels”
In testing and supporting Cloud Storage products, we describe FESF’s ability to interoperate with a given Cloud

Storage product as being one of three levels:

Level 1 Interoperability (L1): FESF and the Cloud Storage product can be installed on the same system without

affecting system stability. That is, systems don’t crash or exhibit unusual behaviors as a result of both products being

installed simultaneously. However, regardless of the Solution policy implemented, it is not necessarily possible for

FESF to encrypt files that are stored in directories that are serviced by the Cloud Storage product.

Level 2 Interoperability (L2): In addition to stability coexisting with a given Cloud Storage product, FESF can encrypt

local copies of files that are stored in the cloud by that product. In products that use placeholder technologies (that

is, where some subset of files stored in the cloud are represented by a “marker file” locally and are only fully recalled

from the cloud when requested by the user), files will be encrypted by FESF when they are recalled from the cloud

and stored on the local system.

Level 3 Interoperability (L3): FESF supports encrypting both local files and files that are stored in the cloud. This

means that FESF encrypted files that are recalled from the cloud can be successfully decrypted and stored locally (in

either encrypted or decrypted form) depending on the Solution policy.

We strive to ensure that all common Cloud Storage products can coexist on the same system as FESF, and thereby

achieve L1 interoperability. It is sometimes hard to even achieve this level of interoperability, but it remains our goal.

Almost everyone would agree that it’s better for FESF to be interoperable with a product at L2 than at L1. At L1, the

best we can say is that the two products coexist peacefully. At L2 end-users can decide (depending on the capabilities

of your Solution, of course) if they want their cloud files to be encrypted when they are stored on their local system.

However, it’s not always possible (barring major changes in the Cloud Storage product itself) for a Cloud Storage

product that’s interoperable with FESF at L1 today to be interoperable with FESF at L2 tomorrow.

Also, it’s not clear that L3 interoperability is necessarily useful in all cases. When files are stored encrypted in the

cloud (the defining attribute of L3 interoperability) users can’t access them using browser-based tools such as

Microsoft Office online. The ability to use these tools is one of the prime motivating factors for many end-users

deciding to put their files in the cloud.

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

5

Further, it’s not always possible for FESF to provide L3 interoperability with a given Cloud Storage product.

15.3.2 Implementing Policies and Strategies for FESF Support of Cloud Storage Products
Figuring out how to get FESF to support encrypting and decrypting files with a given Cloud Storage product isn’t

necessarily simple. It will typically involve analyzing the details of how the Cloud Storage product works, and then

crafting a Solution policy that will result in FESF (and your Solution) doing what you want it to do in terms of

encrypting or decrypting files. Determining how your Solution can best support a given Cloud Storage product is

ultimately up to you, and is part of the value add that your Solution provides to your customers.

For example, the version of OneDrive that was current as of Windows 1809 recalls files from the cloud into a

temporary location named “OneDriveTemp” and a subdirectory named by a GUID. When the file has been fully

recalled, OneDrive renames it to the ultimate target directory. There are different policies and strategies that your

Solution could potentially use if your goal is to cause locally stored files to be encrypted. One might involve causing

all files written into the temporary directory to be encrypted. This will result in the file being encrypted when it is

recalled. When the rename from the temporary directory to the ultimate target directory takes place, the file will

remain encrypted. One could, however, also envision a Solution that utilizes a more sophisticated policy in which the

file is first encrypted in the temporary directory with a unique key, and then when the file is renamed, that rename is

intercepted and the file is re-encrypted using the ultimate end-user’s key. This more advanced policy would probably

be sufficiently challenging to implement that its complexity would outweigh its potential benefits. Still, the point is

that such options are possible, and whether it’s “worth it” is up to you.

Thus, ultimately it is up to you to analyze the behavior of a given Cloud Storage product and to devise the “best”

policy and strategy for your Solution to support that product. And, don’t forget, it’s not unusual for different versions

of a given Cloud Storage product to be implemented differently and for those different versions to be “in the wild” at

the same time. We’ve seen this with OneDrive. There’s nothing FESF can do to make this easier. It is simply

incumbent on your Solution to be ready to handle these variances.

15.3.3 OSR’s Role in Helping Configure FESF for Various Cloud Storage Products
OSR no longer provides detailed guidance or instructions on how to achieve interoperability between FESF and any

given Cloud Storage Provider. This is in part due to the increasing complexity and increasingly rapid rate of change of

cloud products. It is also because the way a given licensee’s Solution interacts with any cloud product, and whether

that Solution can achieve a given level of interoperability with that cloud product, is very much determined by the

Solution, the deployment environment, the end user customer’s requirements, and the applicable threat model.

Because OSR cannot be aware of all these things, OSR can’t provide generically applicable, definitive, guidance.

We warn licensees who have previously relied on OSR guidance regarding how to configure your Solution Policy to

achieve interoperability with OneDrive, that recent versions of OneDrive have significantly changed. Among those

changes, Microsoft has chosen to discontinue all support for disabling simultaneous document co-authoring.

Following the step-by-step instructions provided by OSR with previous versions can lead to potential security

vulnerabilities.

15.4 Cloud Storage Products We Test With
During Microsoft Plugfest, we test with any Cloud Storage products that are available and willing to test with us. We

also do regular, ongoing, testing with some of the most common Cloud Storage products. For FESF V2.0, this includes:

• OneDrive

• Google Drive File Stream

• Dropbox Smart Sync

• Box Sync

OSR FESF Solution Developers’ Guide V2.0 August 2025

Copyright © 2015-2025 Open Systems Resources, Inc. FESF V2.0 -- Release

All Rights Reserved.

P
ag

e1
3

6

We are always interested in hearing what Cloud Storage products are important in your markets. Please let us know,

so we can consider adding them to our test matrix.

15.5 Summary and OSR’s Recommendations
Building interoperable Windows File System products is complex. This is due to several factors, some of which we’ve

enumerated in this paper, but all of which interact to further complicate the problem. The result is that

interoperability problems are an inherent part of creating a Windows File System product. It’s just the way the world

is. It’s why Microsoft spends so much money every year hosting Plugfest sessions.

In dealing with FESF interoperability issues, OSR’s policies and recommendations are as follows:

• Establish customer expectations that interoperability problems may occur. When you DO have an

interoperability issue, get us the bug report as soon as you can and collect all the data that we need. And

remember: The last product that was installed before a bug was discovered is not necessarily the product

that’s at fault.

• When you experience any interop issue, collect as much relevant data for us as you can up front. Always

send us a description of the behaviors you’re seeing at the Windows file system level. Send us multiple crash

dumps.

• When you have a Windows interoperability problem, be sure to get us specific versions. We’ll automatically

prioritize the issue, and you should typically expect a resolution in the next release of FESF.

• When you contact us about an interoperability problem concerning a non-Microsoft component, get us as

much data as possible when the initial problem is reported. Expect that, unless our initial triage yields a clear

problem and solution, we will handle this on a “time available” basis. If interoperating with this third-party

software is critical to your company, let us know. We can usually arrange to escalate an issue at an additional

cost on a per-incident basis.

• When you report an interoperability problem involving a third-party product to us, always file a bug on the

third-party’s product and get us the case number. Also get us any other supporting information that you can

provide.

In addition to the above, when dealing with interoperability issues with Cloud Storage products, OSR’s policy and

recommendations are as follows:

• We test a variety of Cloud Storage products and have qualified them to work with FESF at different levels.

The “level” (L1, L2, L3) indicates the capabilities of FESF with respect to files stored by the Cloud Storage

product.

• We strive to ensure that all common Cloud Storage products can coexist on the same system as FESF and

thereby achieve L1 interoperability. This may not even be possible for every product.

• Interoperability at any given level cannot always be achieved for every product. This is because the way

Cloud Storage products are implemented varies widely.

• It may take detailed analysis of a product’s behavior before you’re able to determine a workable strategy and

policy for your Solution.

• We are interested to hear which Cloud Storage products are important in your market. We are open to

adding additional Cloud Storage products to our interoperability testing list.

