

OSR FILE ENCRYPTION SOLUTION FRAMEWORK

SOLUTION DEVELOPER'S GUIDE
V1.5

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

1 Introduction
This guide provides the necessary architectural and reference information to allow Client developers to design and

interface a Solution with the OSR File Encryption Solution Framework (FESF). A "Client" in this context means a

licensed user of the FESF product. A "Solution" is a group of one or more Client-developed programs that, combined

with FESF, perform or utilize on-access per-file encryption services. Solutions might range in scope from a basic file

encryption product to a document management system that includes per-file encryption as a small part of a much

more comprehensive product suite.

This guide seeks to provide the conceptual background and terminology necessary to allow you to successfully design

and build your Solution using FESF. The guide also contains reference material for the callbacks from FESF to your

Solution and the support routines provided by FESF to making writing your Solution easier.

The reader is assumed to be a C/C++ system programmer who is familiar with general Windows architectural

concepts such as security and common Windows programming concepts such as COM.

2 FESF Overview and Basic Concepts
The OSR File Encryption Solution Framework (FESF) allows Clients to incorporate transparent, on-access, per-file

encryption into their products. While adding on-access encryption sounds like something that should be pretty

simple to accomplish, it turns out to be something that's exceptionally complicated. Creating a Solution that

performs well is even more difficult.

FESF handles most of the necessary complexity, including the actual encryption operations, in kernel mode. This

allow Clients to build customized file encryption products with no kernel-mode programming.

To understand what needs to be created to transform FESF into a complete product, it's important to understand a

few concepts that are central to FESF. We discuss those concepts in this section of this document.

2.1 Policy
When we talk about "Policy" in FESF, we mean exactly two things:

• Whether a newly created file should contain Client defined control information and FESF metadata

information and whether data written to that newly created file should be transparently encrypted before

being stored on disk.

• Whether the data read from an existing FESF encrypted file should be decrypted before being returned to the

application that's reading it and whether data written by that application should be encrypted before it's

stored in that existing FESF encrypted file on disk.

Policy decisions are made in user-mode by the Client Solution. The Client's Solution code is called to make a Policy

decision whenever (a) a new file is created (and before any data is written to it), or (b) an existing FESF encrypted file

is opened (and before any data has been read from or written to it). Although there are a few additional events that

will result in FESF calling the Client Solution, these are the only times when FESF calls the Client Solution to ask for a

Policy decision.

The Client Solution will use data provided by FESF and optionally other data it collects or maintains independent of

FESF as the basis for its policy decision. When a Policy decision is required, FESF provides the following information to

the Solution:

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

• The fully-qualified path of the file being created or accessed. Specifically:

o For files on local volumes, this includes the Volume GUID identifying the volume on which the file

resides, plus the directory path and file name. The Volume GUID unambiguously identifies the

volume, and can be converted to a drive letter by an FESF-supplied utility function.

o For files on shadow volumes, the Volume GUID is predefined as being FE_SHADOW_VOLUME_GUID.

The device name of the shadow volume is supplied as well as the volume relative path to the file.

o For files on the network, the Volume GUID is predefined as being FE_NETWORK_GUID. The server

and share are supplied along with the share relative path to the file.

• The Thread ID (TID) of the thread that's creating or accessing the file. Given this TID, the Solution can

determine the fully-qualified path of the executing image and the Security ID (SID) under which the

application is executing. The SID identifies a user (including username and domain) or other Windows

security principal (such as a security group). FESF provides utility functions to allow the Solutions to easily

determine these values from the provided TID.

• The file access (read data, write data, and others) that was granted to the accessing application.

• The disposition of the file being accessed. This indicates whether the file is being created, overwritten,

appended, or just opened.

Thus, when a new file is created or an existing encrypted file is accessed, the Client Solution determines policy for

that file based on some combination of:

• Drive (or server and share), directory path, and name of the file being accessed

• Path and name of the accessing application

• Security context (that is, nominally the user) under which the application is running.

• The action being performed on the file.

• The access granted to the application for this specific open instance of the file.

Which of these variables are taken into account, and how they may be used to define Policy, is entirely up to the

Client Solution. In addition, variables other than those provided directly by FESF – such as the system on which the

application is running, or the day of the week – could also be used.

By way of example, a very simple policy implemented by a Client's Policy DLL might be:

"We want any files that are created in the directory \MySecretStuff\ on the volume that is the C drive on this

workstation to be encrypted."

That's pretty straight forward. Or, a slightly more involved example:

"Decrypt all encrypted files on the network with the path \\SpecialForces\missions\ImpossibleMission\ only

when they are accessed by a user that's in the Active Directory security group SecretAgents and from a

system that is actively joined to a domain named MI5 or MI6."

That's also pretty simple, but requires the Solution to get the name of the domain to which the machine is joined

outside the mechanisms provided by FESF (it's easy: You just call the Windows function LsaQueryInformationPolicy).

A slightly more complex policy that a Solution could implement would be:

"We want all existing encrypted files accessed by Microsoft Outlook, regardless of the directory that the file

may be in, to not be decrypted when Outlook accesses it, unless the file has the file suffix OST or PST."

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

This third example policy would ensure that if a user attached an encrypted document to an Outlook email, the

encrypted version of the file would be sent, while still allowing locally stored Outlook data files (the OST and PST files)

to be encrypted.

2.2 Policy Definition and Storage
So where and how is Policy defined? Once it's been defined where and how is it stored? These are both entirely

under the control of the Client Solution. In terms of definition and storage, the only thing that is important to FESF is

that the Client Solution promptly responds to callbacks from FESF when FESF asks it for Policy decisions.

A Solution's Policy could be defined by a GUI program or even an MMC snap-in developed as part of the Solution.

Because the factors that are used to define Policy are determined by the Client Solution, FESF does not provide any

standard mechanism for defining Policy.

Some Solutions may store the Policy information in a proprietary Policy server. Others might encode the information

and store it in the Active Directory, using custom extensions of the AD schema. Because the format and content of

Policy is entirely defined by the Client Solution, FESF does not require (or provide) any standard location for Policy

storage.

2.3 Communicating Policy from Client Solution to FESF
When FESF wants to know the Policy for a given access operation on a particular file, it calls a callback in the Client

Solution. The entity within FESF that performs this callback is the FESF Policy Service (FesfPolicy). FesfPolicy is a

standard Windows user-mode service. The callback function that FesfPolicy calls is provided by the Solution in a DLL

known as the Client Policy DLL. FesfPolicy loads this DLL dynamically when it starts based on a Registry parameter.

We'll describe a great deal more about the Client Policy DLL later in this document. However, what's important to

understand at this point is that the Policy DLL is the (one and only) way that FESF asks the Client Solution for Policy

decisions. Thus, the Client Policy DLL is the interface between FESF and the Client Solution when it comes to

determining Policy for a file.

For example, each time a new file is created on a system with FESF running, FesfPolicy will call the Policy DLL's

PolGetPolicyNewFile callback function. As the return value from this function, the Client Policy DLL indicates whether

data should be encrypted when written to the file that's being created or whether data should be written to the file

being created as clear text. Similarly, each time an existing encrypted file is opened, the Policy DLL's

PolGetPolicyExistingFile callback function is invoked. And, similarly, the return value from this function indicates

whether FESF should transparently encrypt/decrypt data when this application instance writes/reads the file, or

whether FESF should provide "raw" access (that is, access without transparent encryption or decryption).

2.4 Key Material and Encryption Identification
As previously described, each time a new file is created, the Client Solution Policy DLL is called by FESF. If the Policy

DLL indicates that data written to the newly created file should be encrypted, the Solution returns three things to

FESF:

1. Header Data: This data – which is entirely defined by the Client Solution -- will be stored by FESF exactly as

provided in the newly created file. This Header Data will be provided by FESF to the Client Solution whenever

the file is subsequently opened and the key is required. The Header Data may contain any information useful

to the Solution, with the restriction that having determined decrypted access is desired, the Solution must be

able to derive the key data for the file given this Header Data.

2. Algorithm ID: This indicates which encryption algorithm (and associated properties) FESF will use to

encrypt/decrypt the file's data.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

3. Key: The key data to be used to encrypt and/or decrypt the file's data.

When an existing encrypted file is opened, the Client Solution Policy DLL is called with the path of the file being

opened and the Header Data that was previously stored in the file (along with other data). This Header Data was

supplied by the Solution when the file was created. Using this Header Data, the Client Solution is responsible for

returning an Algorithm ID and Key Data for FESF to use to decrypt the file's data and encrypt any data that may be

subsequently written to the file.

2.5 Where is the Encryption Actually Done and What Algorithms Are Supported?
In the course of normal operations, encryption and decryption are performed in kernel-mode under FESF's control.

However, FESF itself does not include any encryption components or algorithms. Rather, FESF calls Microsoft's

Cryptography API: Next Generation (CNG) package to accomplish the actual encryption and decryption operations.

CNG includes support for several standard algorithms (including DES, DESX, 3DES, RC2, RC4, and AES) and multiple

modes for each algorithm. In addition, custom CNG Cryptographic Algorithm Providers can be written by Clients to

support any desired algorithm.

FESF is careful to handle key material securely in kernel mode. For example, kernel components never store key

material in pageable memory and scrub the contents of memory used for key material storage prior to deallocation.

When FESF is not installed some encryption and decryption may be performed in user-mode with the assistance of

FESF supplied Stand Alone library functions.

2.5.1 A Word About Encryption Block Size and Initialization Vectors
For algorithms requiring a fixed block size, we use a value of 256 bytes. This choice is arbitrary. Normally, algorithms

that provide a CBC mode also include a non-secret value known as the initialization vector. This prevents identical

blocks from appearing to be identical in the encrypted file content.

When calling CNG encryption methods that require an initialization vector (IV), FESF generates this from the key

material using a technique adapted from the disk drive field and known as the Encrypted Salt-Sector Initialization

Vector (ESSIV). More details about how FESF generates the IV can be found in the FESFSa Function Reference

section, elsewhere in this document.

2.6 Existing Files Are Not Automatically Encrypted
A careful reader might notice that we have so far only described how newly created files are transparently encrypted

by FESF and how existing files that are already encrypted are handled by FESF. We have not, however, discussed how

existing files that are not encrypted become encrypted. In other words, continuing one of our previous example

where we had the Policy:

"We want any files that are created in the directory \MySecretStuff\ on the volume that's the C drive on this

workstation to be encrypted."

Any files that are newly created in the directory \MySecretStuff\ would be automatically encrypted by FESF after this

policy was established (based on the response received when the Solution's Policy DLL is called). But suppose some

files already existed in the \MySecretStuff\ directory when this Policy was established. How would these files become

encrypted?

The answer is, it is up to the Client Solution to request that those files be encrypted, if and when desired. This is

because only the Client Solution understands when Policy can be defined or changed, what security risk is associated

with having existing unencrypted files in various locations, how many files might need to be encrypted as a result of a

new Policy being created, and when an appropriate time to encrypt affected files might be. Some Client Solutions

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

might require Policy to be defined network-wide, and then perform encryption of existing files on individual

workstations at "pre-boot" startup time (before users are allowed to login to the system). Others might choose to

never encrypt existing files. FESF provides complete flexibility in this regard.

2.7 The Basics of Policy Operation
With the background provided so far, we can now discuss more details about the flow of control for accessing files

when FESF is installed.

2.7.1 Raw vs Encrypted/Decrypted Access to Newly Created Files
For each new file that's created, FESF calls the Client Solution's Policy DLL at its PolGetPolicyNewFile callback function

to determine the Policy for that file. In other words, FESF calls the Policy DLL to determine whether the data written

to the file should be encrypted. If the Solution indicates that the data should be encrypted, FESF next calls the Policy

DLL's PolGetKeyNewFile to get the Header Data, Algorithm ID, and encryption Key data for the newly created file.

Using the provided Algorithm ID and Key, FESF transparently encrypts data written to the file and decrypts data read

from the file. In addition, FESF adds control and consistency metadata information to the file, including the Client-

defined Header Data, to enable later validation and decryption.

If the Policy DLL indicates the data should not be encrypted, FESF performs no additional processing on the file's data.

The file's data is written without modification. The Policy DLL's PolGetKeyNewFile is not called, and FESF adds no

additional information to this file.

2.7.2 Raw vs Encrypted/Decrypted Access to Existing Encrypted Files
For each existing encrypted file that's accessed, the Client Solution's Policy DLL is called at its PolGetPolicyExistingFile

callback function to determine whether that particular open instance should be granted raw or encrypted/decrypted

access

Open instances that receive encrypted/decrypted access result in file data being transparently decrypted by FESF

when read, and transparently encrypted by FESF when written. This is the typical mode for "permitted" applications.

Data is encrypted while stored (at rest) on disk, but applications transparently see ordinary (plaintext) data. To

enable these transparent encryption/decryption operations, FESF calls the Solution's Policy DLL at its

PolGetKeyFromHeader callback function. FESF passes the Policy DLL's Header Data that was previously returned by

the Policy DLL's PolGetKeyNewFile callback when the file was created. Given this Header Data and the path of the file,

the Policy DLL returns the Algorithm ID and Key.

Open instances that receive raw access see data without any additional processing by FESF. Raw access is typically

given to programs such as backup utilities. This results in the backed-up data being restored in encrypted form.

2.8 FESF Policy Caching
A powerful feature of FESF is the FESF Policy Caching. A Solution's Policy DLL may enable FESF Policy Caching by

setting the AccessCache.Enable field of the FE_POLICY_CONFIG structure to true. To ensure good system

performance, we strongly recommend all Solutions enable Policy Caching. Windows applications, including system

components such as the Windows shell (Explorer.exe), have a strong propensity to open and close files repeatedly.

This is why Policy Caching is so critical.

When FESF Policy Caching has been enabled by a Policy DLL, FESF makes an entry in its kernel-mode Policy Cache for

the file after it returns from each call to PolGetPolicyNewFile or PolGetPolicyExistingFile. The data stored in the FESF

Policy Cache is based on the values passed into and returned by those functions, and includes:

• Accessing process. This is the process that owns the thread indicated in the ThreadId argument.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

• Access. This is the value supplied in the Granted Access argument.

• FE_POLICY_RESULT. This is the return value from the Policy DLL.

Note that these cache entries are associated exclusively with a particular file that is being opened. Each subsequent

time that same file is opened, FESF consults the FESF Policy Cache for the file. If an entry exists in the cache for the

same process and the same type of access, FESF uses the cached FE_POLICY_RESULT instead of calling the Policy DLL.

This eliminates the overhead of calling the Policy DLL to determine policy for a file, process, and access type when the

Policy DLL has already returned the desired policy (for that file, policy and access type) to FESF. An exception to this

behavior is when a thread is "impersonating" (that is using different security information than the process that owns

the thread). The FESF Policy Cache is never consulted for files accessed by impersonating threads.

The duration of this caching behavior lasts as long as the file remains open or Windows retains file (data) caching

information for the file, whichever is longer. On systems with lots of free memory, caching can persist for a very long

time (many hours) after a file has been closed. On systems with significant memory pressure, caching might persist

only as long as a thread actively has an open handle to a file.

While the life of the FESF Policy Cache cannot be extended arbitrarily, entries can be selectively removed from the

FESF Policy Cache at any time by the Policy DLL. The Policy DLL can remove entries in the FESF Policy Cache for a

chosen file by calling the FesfUtility function PurgePolicyCacheFile. This removes all FESF Policy Cache entries for a

given file. The Policy DLL can also remove all entries from the FESF Policy Cache related to a given process. This is

done by calling the FesfUtility function PurgePolicyCacheThread, and providing the Thread ID of any thread in the

process. This call removes all FESF Policy Cache entries for all files for the process associated with the thread (or for all

processes, if the provided TID is zero).

Finally, it should be noted that if the FESF Policy Service terminates or becomes unresponsive, the FESF Policy Cache is

completely purged.

2.9 Online, Offline, and Not Installed
FESF is capable of operating in three states:

• Online State – In this state, the FESF Kernel Mode Components and FESF User Mode Components (including

the FESF Policy Service) are operating. In addition, enough of the Client Solution is operating to return

prompt Policy decisions. This is the ordinary state of FESF on a running system.

• Offline State – In Offline State, FESF Kernel Mode Components are installed and running, but the FESF User

Mode Components and/or Client Solution are not operating. This state can occur when the user mode

components terminate unexpectedly and have yet to restart fully. This state also applies during the earliest

part of system startup. FESF Kernel Mode Components are loaded and started at Boot time, but (due to the

way Windows works) the FESF User Mode Components start slightly later. The time between when the FESF

Kernel Mode Components are active and the time that the FESF Policy Service can promptly return Policy

decisions, FESF runs in Offline State. This state also occurs during the system shutdown process.

• Not Installed State – In this state, the FESF Kernel Mode Components are either not installed or are

absolutely and definitively known to be not running and unavailable on the system. Therefore, these

components cannot be used to provide support for any operations, including file encryption

In Online State, Policy decisions are made based on information provided by the Client Solution.

In Offline State, the FESF Policy Cache is purged and any new open requests are granted raw access. Rename and

hard link creation requests are treated according to the defaults established by the Policy DLL during its initialization.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

Read and write operations to encrypted files that are currently open with encrypt/decrypt will continue to receive

this access (with data being transparently encrypted and decrypted) until the file is closed.

In Not Installed State, ordinary FESF operations are not available (obviously… because FESF is not installed). On

systems in this state, FESF supports the use of Stand Alone Utilities that can be used to encrypt, decrypt, or change

the Header Data of files. FESF currently supports developing Stand Alone Utilities on both Windows and Linux,

through use of an FESF-provided library. This library (FESFsa.lib) interprets FESF On Disk Structure (ODS) and provides

a highly flexible framework for performing encryption and decryption operations using Client-provided code. This

library is described later in this document.

2.10 Files or Streams?
One final detail remains to be discussed. The FESF documentation, and even the names of interfaces, uniformly

refers to files as the unit of access. For example, we might describe the PolGetPolicyNewFile function as follows:

"A Policy DLL's PolGetPolicyNewFile callback function determines whether a new file should be created in

encrypted or non-encrypted format."

While this is correct, it doesn't say anything about how FESF deals with alternate data streams ("streams") on file

systems that support them.

FESF is fully stream aware. This means that FESF supports accessing, and optionally transparently encrypting and

decrypting, data on a per-stream basis on file systems that support alternate data streams. Therefore, for file systems

that support streams, the FESF documentation should be read as including "stream" whenever the term "file" is

encountered.

On file systems that support alternate data streams, the file name information passed into the Client Solution

includes the name of the stream when that stream is not the default data stream (that is, when the stream name is

not "::$DATA"). This means that on files with alternate data streams, FESF allows the Client DLL to establish Policy on

a per stream basis and not just on a per file basis. Also, while FESF will not call the Policy DLL for directories as a

general rule, for file systems that support streams on directories it will call the Policy DLL for streams created on

directories.

In terms of FESF Policy Caching, caching is done on a per-stream basis. Thus, on file systems that support alternate

data streams, the support function PurgePolicyCacheFile applies to a specific stream of the file (if the file has multiple

data streams).

As a general guideline, any reference in FESF documentation that refers to "files" should be understood to refer to

"streams" on file systems that support alternate data streams.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

3 FESF Components and Interfaces
The basic architectural layout of the FESF system is shown in Figure 1.

Looking at Figure 1, Components shown in orange are developed, provided, and maintained by OSR. Items shown in

green are developed by the Client as part of the Client Solution.

Black solid and dashed lines indicate FESF architecturally defined interfaces that are documented and supported by

OSR. The solid black line between the FESF Policy Service and the Client Solution Policy DLL represents a

(synchronous) call and return interface. The black dotted lines represent COM interfaces for FESF-provided support

and utility functions that may optionally be used by a Client Solution.

The red lines are undocumented, unsupported, interfaces that are private and reserved to OSR and subject to change

in future FESF releases. The Client Solution should never invoke the interfaces defined by the red lines directly, but

rather should use the public, supported, interfaces designed and provided by FESF.

Kernel Mode

FESF Kernel Mode Components

FESF Data

Storage Service

(FESFDS.exe)

FESF Policy

Service

(FESFPolicy.exe)
Client

Solution

Policy DLL

User Mode

Client Solution Policy

Creation and

Storage, Key

Management and

Key Storage

Client Solution

Online Applications

and Utilities

FESF Utility

Library

(FesfUtility.dll)

FESF Stand -

Alone Library

(FESFSa.Lib)

Client Stand Alone

Utilities (FESF Not

Installed State only)

Figure 1 -- User-Mode FESF Component Layout

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0

3.1 FESF Kernel Mode Components
The "big orange cloud" in Figure 1 represents the collection of OSR-supplied FESF Kernel Mode Components. These

comprise a series of file system mini-filters and their associated libraries. There are a total of four FESF kernel-mode

components that are installed as part of FESF: OsrIsolate.sys, OsrDt2.sys, OsrDs2.sys, and OsrSupport.sys.

The FESF Kernel Mode Components are responsible for intercepting file operations (such as CreateFile, ReadFile, and

WriteFile) on supported file systems, implementing Client Solution-specified Policies, managing provision of the

correct "view" (encrypted/decrypted or raw) of a given file's data based on the Client-specified Policy, and also for

performing the actual encryption/decryption operations via Microsoft's CNG kernel-mode library.

Source code for the kernel-mode portions of FESF is not provided as part of the standard FESF kit license.

3.2 FESF User Mode Components
The orange rectangles in Figure 1 represent FESF User Mode Components. These components comprise the

FesfPolicy service, and two support components: the FesfDs Service and the FesfUtility DLL. OSR reserves the right to

extend or add to these components in future FESF releases.

Looking at Figure 1, you'll notice that the FESF Policy Service provides the interface between the FESF Kernel Mode

Components and Client Solution components in a system. The support components are provided for use by Client

Solution components to make many common operations easier.

3.2.1 FESF Policy Service (FesfPolicy.exe)
The FESF Policy Service is the interface between FESF and the components of a Solution that determine Policy. The

FESF Policy Service receives requests from the FESF Kernel Mode Components, converts them to the expected format,

and passes them to the Client Solution's Policy DLL. All calls from the FESF Policy Service into the Policy DLL are done

via conventional call/return interfaces.

It is important to understand that the only interface from FESF to a Client Solution is via FesfPolicy, which in turn calls

the Client Solution's Policy DLL. While Solution components can call FESF to request information or perform utility

functions, all calls that originate from FESF come through FesfPolicy and the Solution's Policy DLL.

The FESF Policy Service calls entry points in the Policy DLL in the context of a worker thread. These calls are

synchronous. That is, the Policy DLL must only return when it has the information requested (or else return an error).

When a call to the Policy DLL is made, that call is blocking an associated kernel-mode operation. When the Policy DLL

returns from a call, the results are returned by the FESF Policy Service to the FESF Kernel Mode Components.

The source code, and all the items necessary for building FesfPolicy from source, are provided as part of your FESF

License. This code is for your reference only. OSR does not support changes or customizations to FesfPolicy.

The specifics of the interface between FesfPolicy and the Client Solution Policy DLL, are described later in this

document in the section Policy DLL Callback Function Reference

3.2.2 FESF Data Storage Service (FesfDs.exe)
The FESF Data Storage Service is a Windows service that provides support functions to components of the Client's

Solution. The FESF Data Storage Service is an out-of-process COM server that exports the IFesfDs interface and a class

identifier (CLSID) FesfDs.

The functions exported by the FESF Data Storage Service primarily support the manipulation of files with knowledge

of the FESF On-Disk Structure (ODS). FesfDs also provides some general utility functions. The services provided by

FesfDs include:

• Determining whether a given file is stored in FESF encrypted format.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1

• Determining the true size on disk of a file stored in FESF encrypted format.

• Retrieving and/or updating the header for a file stored in FESF encrypted format.

• Checking a file stored in FESF encrypted format to determine if it is internally consistent, and optionally

attempting to repair that file if problems in the on disk structure are found.

One of the primary features of FesfDs is that it is designed to provide services that can be used in Online, Offline, and

FESF Not Installed environments (please be sure to refer to section 2.9 Online, Offline, and Not Installed for the FESF-

specific description of these states). This allows Client Solution components to determine if a given file is encrypted,

and even perform limited encryption, decryption, and file validation operations when the FESF Kernel Mode or even

User Mode Components are not available to provide assistance. Most of the functionality provided by FesfDs relates

to the ODS of FESF encrypted files. This structure defines and controls the in-file storage of the FESF control and

consistency information, including the Client Solution's Header Data.

The FESF ODS components are supported in part by common functions or libraries. These support functions are

implemented in libraries specifically designed to facilitate multiple OS support (including Windows, iOS, and Linux

variants). As of FESF V1.3, FESF provides the libraries necessary to support several types of operations on Windows

and Linux systems.

FesfDs currently supports IsFileEncryped, ReadHeader, UpdateHeader and UpdateHeaderWithExtension operations in

Online (that is, FESF installed and running) and Offline State (that is, FESF installed but user-mode Solution

components are not running). In addition, FESF supports “Stand Alone” versions of certain FesfDS functions that

allow applications to perform FESF operations (including encrypting and decrypting FESF files or updating headers on

FESF encrypted files) without FESF being installed. This support is provided by the FESF Stand Alone Library, described

elsewhere in this document.

The source code, and all the items necessary for building FesfDs from source, are provided as part of your FESF

License. This code is for your reference you only. OSR does not support changes or customizations to FesfDs. Also,

OSR does not support the direct use of functions that are internal to FesfDS. All operations performed by a Solution

on the ODS must be performed through a documented interface. The only documented interface provided by FESF for

ODS operations is through the COM interface provided by the FesfDS Service. Note that the internal functions called

by FesfDS functions will very likely change in future FESF releases.

The list of functions provided by FesfDs are described in detail in the section FESFDs Function Reference, later in this

document.

3.2.3 FESF Utility Library (FesfUtility.dll)
The FESF Utility Library provides support functions to components of the Client’s Solution. The FESF Utility Library is

an in-process COM server (that is, a DLL) that exports the IFesfUtil and IFesfUtil2 interfaces and a class identifier

(CLSID) FesfUtil. Because it is implemented as a DLL, the overhead for calling functions in FesfUtility is relatively low.

The FESF Utility Library provides general utility support to Client Solutions, as its name implies. A few of the services

that FesfUtility provides are:

• Determining whether the FesfPolicy Service is running.

• Determining whether a given file is stored in FESF encrypted format.

• Determining the true size on disk of a file stored in FESF encrypted format.

• Translating a Volume GUID and file path, as provided by FesfPolicy, to a fully qualified local path specification.

• Retrieving the fully qualified path of a running application, given a Thread ID provided by FesfPolicy.

• Retrieving the Security Identifier (SID) of an executing program, given a Thread ID provided by FesfPolicy.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2

• Determining if the Security ID (SID) associated with the provided Thread ID is a member of a given Security

Group identified by a Security ID.

The source code, and all the items necessary for building the FESF Utility Library from source, are provided as part of

your FESF License. This code is provided for your reference only. OSR does not support changes or customizations to

FesfUtility.

Additional details about FesfUtility.dll, including documentation for all the functions it makes available, is provided

the section entitled FESFUtility Function Reference later in this document.

3.2.4 FESF Stand-Alone Library (FESFsa.lib)
The FESF Stand-Alone library provides support for implementing Client Solution components that will work in FESF

Not Installed state. FESFsa.lib is a cross-platform C/C++ library designed to work on multiple operating systems.

Windows and Linux are currently supported.

The FESF Stand-Alone Library provides support for operations that are useful to perform when FESF is in the Not

Installed State, such as during a recovery operation or when dealing with FESF encrypted files on a Linux client.

Currently, these operations include:

• Decrypting a file that was previously encrypted using FESF.

• Encrypting a file.

• Determining whether a given file is stored in the FESF encrypted format.

The source code for the FESF Stand-Alone Library, and all the items necessary for building FesfSa from source, are

provided as part of your FESF License. This code is for your reference you only. OSR does not support changes or

customizations to FesfSa. Also, OSR does not support the direct use of functions that are internal to FesfSa.

Additional details about FesfSa.lib, including documentation for all the functions it makes available, is provided the

section entitled FESFSa Function Reference later in this document.

3.2.5 Comparing FesfDs, FesfUtility, and FesfSa
FesfUtility, FesfDs, and FesfSa provide some of the same functions, such as the ability to determine if a file is

encrypted. There are a few distinguishing characteristics between the functions provided by FesfUtility, those

provided by FesfDs, and those provided by FesfSa. These are summarized in the following table:

Component Implemented as… Available when FESF is in this state

FesfDs Out of process COM Server On Line State or Offline State

FesfUtility In-Process COM Server Online State or Offline Line

FesfSa Statically linked library Not Installed State ONLY

In interpreting the table above, please be sure to refer to section 2.9 Online, Offline, and Not Installed for the FESF-

specific description of the indicated state.

Functions provided by FesfUtility are purely utility-related functions, provided for the convenience of the Client

Solution components. Because FesfUtility is an in-process COM server, the overhead of calling functions in this library

is minimal (no more than calling a function in any DLL). FesfDs is a Windows service that provides functions as an out-

of-process COM server. Calling functions in FesfDs requires marshaling arguments, sending them to a separate

process, and context switching into a thread in that process to service the request. Thus, the overhead of calling a

function in FesfUtility is significantly lower than calling a function in FesfDs.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3

Functions provided by FesfSa are only for use in FESF Not Installed State. This is a critical restriction that must not be

taken lightly. Using utilities that build with FesfSa on systems where FESF is running will result in unpredictable

results, including potential loss of data.

3.3 Client Solution Components
The Client Solution will comprise as few or as many components as required to implements its design goals.

Components of the Solution may be local to or remote from any given system or (most likely) a combination of the

two. The only part of the Client Solution that is required by FESF is a Policy DLL that will be called by the FESF Policy

service.

3.3.1 Client Solution Policy DLL
The Client Solution Policy DLL is provided by the Client. OSR includes a complete and well-documented sample Policy

DLL (SampPolicy) that Clients can use as the basis for their own implementation. See the FESF Sample Solution Guide

for more information on the OSR-provided sample code.

As previously described, the Client Solution's Policy DLL is the primary interface point between FESF and the Client's

product implementation. Except for the initialization callback which is always called by name, callback functions in

the Policy DLL are called by pointer. The Policy DLL passes pointers to each of its callback functions during

initialization processing. After initialization, FESF calls callback functions in the Policy DLL to determine policy for a

particular open instance of a file, as well as to retrieve the Policy DLL defined Header Data and Key data for files that

are to be encrypted/decrypted by FESF.

As an example of how things work, consider the Policy DLL's PolGetPolicyNewFile function. This function is called

whenever a new file is being created on a supported file system. After the CreateFile has been successfully processed

by the target file system but before the user's call to open the file has completed, the FESF Policy Service calls the

Policy DLL's PolGetPolicyNewFile callback function to determine if data subsequently written to this file should be

encrypted. If PolGetPolicyNewFIle indicates that the file is to be encrypted, FESF calls the Policy DLL's

PolGetKeyNewFile to retrieve the Algorithm ID, Key, and Policy DLL specific Header Data to be stored with the file to

allow the file to be decrypted at a later time. During the call into the Policy DLL, the user application that called

CreateFile (and the kernel-mode mechanism associated with this operation) is blocked, waiting, until both

PolGetPolicyNewFile and PolGetKeyNewFIle return. As a result, all processing done in the Policy DLL must be prompt.

Processing for other callbacks in the Solution's Policy DLL work similarly. The calls to PolGetPolicyExistingFIle, and

PolGetKeyFromHeader take place after the application's CreateFile operation has been processed by the file system

on which the file is located, but before the user is informed of the result. Again, this call into the Client's Policy DLL is

blocking completion of Windows' kernel mode processing of this open operation and ultimately the application's

further progress.

Note on lack of serialization among Policy DLL callbacks
A note is probably appropriate here about parallel operations. The FESF system as a whole is intrinsically

asynchronous. This reflects the way that the Windows OS does its work, and is also considered "best practice" in

terms of overall system performance and throughput. As a result of this asynchronous design, multiple calls to the

Policy DLL can take place in parallel. FESF provides no serialization for calls into the Policy DLL. Thus, it will be typical

for multiple threads to call into the Policy DLL simultaneously. In fact, it is even possible for the Policy DLL to get

multiple simultaneous calls to the same callback function, such as PolGetPolicyNewFile for the same file. This is

possible if two threads attempt to create the file at the same time.

In the case that two different threads both simultaneously attempt to create the same file, only one of them will

ultimately succeed (in kernel-mode processing). FESF will ignore the result returned by the Policy DLL from the second

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

4

(and, hence, unsuccessful) attempt. Subsequent attempts to retrieve the Key Data and Header Data will consistently

return the same Key Data and Header Data that was actually used by the file.

This can get even more confusing, however, when multiple threads attempt to access an existing encrypted file

simultaneously. This could result in multiple simultaneous calls to the Policy DLL's PolGetPolicyExistingFile callback. If

the openers each provide appropriate share access, multiple openers can succeed. So, in this case, the results

returned by the Policy DLL's PolGetPolicyExistingFile callback will all be relevant.

In summary, when the FESF Policy Service calls the Policy DLL, that call is synchronous in that an associated file

operation is being blocked while this call is in progress and the operation will only continue when the Policy DLL

returns. However, the FESF Policy Service will call the Policy DLL's entry points in parallel from multiple worker

threads (perhaps a few hundred!). The same callback function in the Policy DLL can be called an almost limitless

number of times in parallel, and multiple different functions in the Policy DLL can also be called in parallel. It is the

job of the Policy DLL (and any user-mode components with which it communicates) to provide whatever serialization

may be required.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

5

4 Designing and Building a Solution
As previously described, the design of a given Client Solution is dependent almost entirely on the design goals and

scope of that Solution. The only required component of any given Client Solution is the Policy DLL. In this section,

we'll describe the interface functions and major points to consider in implementing a Policy DLL.

The FESF Policy Service calls callback functions in the Policy DLL to determine Policy, gather data, provide an

opportunity for the Policy DLL to exercise control over particular functions, and to perform other support operations.

The Policy DLL is loaded dynamically by the FESF Policy Service via a call to the Windows function LoadLibrary based

upon the FESF configuration information in the Windows Registry (see the Section entitled Arranging for FESF to Load

Your Policy DLL). After the Policy DLL is loaded, FESF calls PolicyDllInit to allow the Policy DLL to perform initialization

processing. This initialization includes the Policy DLL calling FePolSetConfiguration to inform FESF of various

configuration choices, including providing pointers to FESF for the callback functions that the Policy DLL supports.

While the role of the Client Solution's Policy DLL is always the same in any FESF system (it is always the primary

interface between FESF and the Client's implementation), different Client Solution architectures may result in the

Solution's Policy DLL doing very different processing. In some architectures, almost no processing is done in the Policy

DLL aside from argument preparation and data marshalling. The Policy DLL is essentially stateless. In these

architectures, actual policy determination and key management is done by a service with which the Policy DLL

communicates. That service may either be hosted locally (on the same system as the Policy DLL) or remotely (on a

server on a LAN system, for example).

In other Solution architectures, Clients may design their Policy DLL to be a more active participant in policy

determination. In these architectures, the Policy DLL might store policy and key information locally, and only invoke a

remote policy and/or key management service when local information is not available.

And, of course, there are infinite variations on the two Solution architectures that we've described.

Each approach to building a Policy DLL has its particular advantages and disadvantages. The Solution chosen will

ultimately depend on what best meets the needs for the overall product being built and the environment in which it

will be used. In any case, FESF does not impose any specific requirement or restriction on the Client Solution

architecture, beyond the requirement that returns from Policy DLL callback functions must be prompt.

As an example of one basic approach to building a Solution using FESF – and as a demonstration of how to use the

provided support services and perform common operations – OSR provides the complete source and executables for

a Sample Solution. For more information about this sample, please refer to the FESF Sample Solution Guide.

4.1 Policy DLL Callback Functions
The possible callback functions that a Policy DLL can support are:

• PolicyDllInit – This is the only entry point that is called by name, and it must be named PolicyDllInit. This

callback function is called by FESF immediately after the Policy DLL has been loaded to allow the Policy DLL to

perform initialization processing. This processing must include initializing a FE_POLICY_CONFIG structure and

filling it in with pointers to the other callback functions supported by the Policy DLL. The FE_POLICY_CONFIG

must then be passed to FESF by the Policy DLL calling FePolSetConfiguration during its PolicyDllInit callback

function processing. This callback function is required, and must be implemented by every Policy DLL.

• PolGetPolicyNewFile – Called when a new file is being created with write access requested on a supported file

system, to determine if the file should be created in FESF encrypted format. This callback function is required,

and must be implemented by every Policy DLL. Note that for the purposes of FESF, a "new file being created"

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

6

include an existing zero-length file being opened or the destructive create of any existing file. See the

reference pages for PolGetPolicyNewFile for the details

• PolGetKeyNewFile – Called when a new file is being created in FESF encrypted format to get the Key Data and

Algorithm ID to be used to encrypt data for the file, and the Policy DLL Header Data that will be stored with

the file. This callback function is required, and must be implemented by every Policy DLL.

• PolGetPolicyExistingFile – Called when an existing FESF encrypted file is being opened to determine if

encrypted data read from the file should be decrypted before it's returned and whether data written to the

file should be encrypted before it's written. This callback function is required, and must be implemented by

every Policy DLL.

• PolGetPolicyDirectoryListing – Called when a directory is opened to determine whether the sizes returned in

a directory listing will reflect what is consumed on disk (allowing for the Solution Header) or just the size of

the data in the file.

• PolGetKeyFromHeader – Called when an existing FESF encrypted file is being opened, and the Policy DLL has

previously determined that the opening handle will receive transparent encrypted/decrypted access. Given

the Thread ID of the thread performing the access and the Policy DLL Header Data that FESF stored with the

file, the Policy DLL returns the Key Data and Algorithm ID to be used for encryption and decryption

operations. This callback function is required, and must be implemented by every Policy DLL.

• PolApproveRename – Called when a file on a supported file system is being renamed. The Policy DLL can

choose to allow or disallow the operation for security purposes. This callback function is optional.

• PolApproveCreateLink – Called when a hard link is being created on a supported file system. The Policy DLL

can choose to allow or disallow the operation for security purposes. This callback function is optional.

• PolApproveTransactedOpen – Called when a transactional open is encountered. All transactional opens are

treated by FESF as raw. This call gives the Solution the option of disallowing the open completely. A Solution

might choose to do this if allowing the open could lead to secure data leakage. This callback function is

optional.

• PolReportFileInconsistent – Called when FESF discovers a file that is in FESF format, but that has an internal

inconsistency or format error. This callback function is optional.

• PolFreeHeader – Called by FESF to return the storage for Policy DLL Header Data that was previously allocated

by the Policy DLL. This callback function is required, and must be implemented by every Policy DLL.

• PolFreeKey – Called by FESF to return the storage for the Key Data that was previously allocated by the Policy

DLL. This callback function is required, and must be implemented by every Policy DLL.

• PolReportLastHandleClosed – Called when the last handle to a file in FESF encrypted format is being closed.

This callback function is optional.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

7

• PolDllUninit – Called during shutdown to allow the Policy DLL to perform any cleanup operations it requires.

Aside from the required functions, a Policy DLL only needs to implement those functions that are relevant to the

Client product.

4.2 Policy DLL Initialization
Every Policy DLL must implement a PolicyDllInit callback function. This is the only Policy DLL callback function that is

called by name.

The purpose of the PolicyDllInit callback function is to perform Policy DLL initialization. This initialization must

include calling FePolSetPolicyConfiguration to select configuration options and provide FESF pointers to the other

callback functions that the Policy DLL supports.

To be able to call FePolSetPolicyConfiguration, the Policy DLL builds an FE_POLICY_CONFIG structure. This structure

is typically allocated on the stack by the Policy DLL. The structure must be zeroed before use.

Also specified in the FE_POLICY_CONFIG structure are a list of encryption algorithms and options, and a unique

handle that will be used by the Policy DLL to identify each specific algorithm/option pair.

The FE_POLICY_CONFIG structure is also the place where the Policy DLL indicates how FESF should handle rename

and hard link operations when it is in Offline State. The Policy DLL also indicates how FESF encrypted files that are

internally inconsistent should be treated in Offline State.

4.3 Returning Failure from Policy DLL Callbacks
The Policy DLL callbacks PolGetPolicyNewFile, PolGetKeyNewFile, PolGetPolicyExistingFIle, and PolGetKeyFromHeader

can all return failure indications. Returning failure from these functions should be avoided, if possible, and reserved

only for serious error conditions.

The reason for this recommendation is that these callbacks are called by FESF after the user has successfully opened

the given file. When the Policy DLL returns an error, the user will receive an error back from what was otherwise a

successful create operation. When that open operation includes a "destructive create" (an open operation that

supersedes or overwrites an existing file) the contents of the existing file have already been deleted. If the open

operation results in a new file being created, that new file has already been created on disk when the Policy DLL's

callback is called.

In these cases, returning an error from one of the previous mentioned functions can result in an empty file being

created on the system. FESF does not attempt to clean-up these empty files in any way.

4.4 Guidance for Implementing Callback Functions
Regardless of the design of your Solution, there are four important things we'd like you to keep in mind in terms of

the design and implementation of Client Policy DLL callbacks. Those four things, in no particular order, are:

• All Policy DLL callback code that you implement must be thread-safe. FesfPolicy dynamically grows (and

shrinks) the pool of worker threads it uses to call Policy DLL callbacks. FESF currently sets the maximum

number of active callback threads to 122 on 32-bit systems, and to 244 on 64-bit systems. These maxima are

subject to change, up or down, in subsequent releases of FESF. During pre-release testing, we regularly hit

the maximum number of active worker threads. A design which takes maximum advantage of the parallelism

offered by FESF, and an efficient, scalable, locking scheme where access to shared data is required, are a

must in your Solution.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

8

• Callbacks to your policy DLL must complete "promptly." Remember, when FesfPolicy calls your Policy DLL

it's blocking a kernel-mode operation, typically a user's request to open or create a file. For the Solution and

the overall Windows system on which the Solution is running to exhibit good performance, prompt and

efficient processing is a must. A Solution architecture that judiciously caches information, including Policy

decisions, key material, and user Security Group membership, is strongly advised. While we're not fans of

premature optimization, we would encourage you to at least take these precepts into account as part of your

Solution's initial design.

You might reasonably ask "What time period, precisely, does 'promptly' imply?" Unfortunately, we don't

have a good answer for you. By promptly, we really mean "as soon as practically possible for your Solution."

Each workload will be different, and your Solution has to meet your design and usability goals. However,

from a systems perspective, we would advise targeting a small number of seconds (in the low single digits) as

the maximum time for a Policy DLL callback to complete under heavy system load. This should yield

acceptable performance. This is provided only as a guideline to aid you in your design.

One absolute maximum that we can warn you about is that used by the FESF Kernel Mode Components.

These components set an arbitrary maximum of 30 seconds that they will wait for a reply from user-mode.

One of our developers describes this interval as "a virtual eternity", and indeed it is the uppermost bound

that can be expected for a reply even on a severely degraded system. After this period of time, an error

message is logged to the Windows Event Log and the timed-out operation is completed with an error (access

denied). While this will ensure the system remains running, returning errors from a Policy DLL callback is

rarely desirable (see the next item below).

• Avoid returning failure codes when possible. As described in the section above entitled Returning Failure

from Policy DLL Callbacks, it is almost always a bad idea to return a failure code from the

PolGetPolicyNewFile, PolGetKeyNewFile, PolGetPolicyExistingFIle, and PolGetKeyFromHeader Policy DLL

callbacks. We would advise you to restrict failure returns to those conditions which are unforeseeable and

catastrophic. We would recommend not returning failure statuses to FESF callbacks in transient conditions

such as lost connections or slow responses from your key management server. Obviously, only you

understand your Solution and its requirements. But, at the very least, please do not return an error from

these callbacks as an alternative form of implementing file access security.

• Be conscious of the potential for reentrancy, and avoid it. Bear in mind that your Policy DLL's callbacks are

executing while a Windows system service (typically a CreateFile operation) is pending. This means you must

avoid the potential for reentrancy problems. As a very simple example, consider what might happen if you

try to create a new file each time you're called in you PolGetPolicyNewFile callback. In this example, your

PolGetPolicyNewFile callback would get called-back endlessly (each time, creating a new file which then

results in another callback). Not good!

4.5 Guidance Regarding Policy DLL Header Data
When a Solution’s Policy DLL determines that a newly created file should be encrypted, FESF subsequently calls the

Policy DLL’s PolGetKeyNewFile. In response to this callback the Policy DLL returns encryption key information, as well

as an initial copy of Policy DLL defined Header Data for FESF to store with the newly created file.

The Policy DLL defined Header Data may contain any data the Solution may require to derive the encryption key

information for the file on subsequent accesses. However, FESF will attempt to significantly optimize storage of

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

9

Header Data that is “small.” FESF currently defines “small” as being less than 200 bytes in length. This value is

subject to change in subsequent FESF releases, as is the manner and extent that FESF choses to optimize storage for

small files.

The only supported method for a Solution to retrieve or update the Header Data stored with an FESF encrypted file is

by using documented functions, such as those supplied by FesfDS (while FESF is installed) or FesfSa (when FESF is not

installed on the system) and described later in this document.

4.6 Working with Local, Network, and Shadow Volume File Paths
File paths are expressed to the Policy DLL via an FE_POLICY_PATH_INFORMATION structure. This structure is used to

describe both local file paths as well as network file paths.

In the case of a local file path, the volume GUID of the local volume is supplied along with the volume relative path to

the file. The Policy DLL may use the volume GUID to look up a “friendly name” for the volume, such as a drive letter or

mount points, using standard Windows APIs. The Policy DLL may also call the FESF Utility function

GetFullyQualifiedLocalPath, which will attempt to convert the volume GUID into a friendly name and concatenate the

supplied relative path. You can read more about volume GUIDs, drive letters, and mount points by consulting the

MSDN documentation.

If the volume GUID supplied is FE_NETWORK_GUID, the path supplied represents a file located on a network share.

Network shares do not have volume GUIDs and thus this GUID is meaningful only within the bounds of the FESF Policy

DLL interface and as input to certain FesfDs APIs. The server and share are supplied along with the share relative path

to the file.

Network paths have some potentially unexpected behaviors that warrant additional discussion. Of particular note is

the fact that FESF components make no attempt to normalize or rationalize the server component of the UNC path.

For example, let’s assume that there is a server EmployeeFiles in the FESFTest domain with two IP addresses

10.0.0.10 and 10.0.0.11. A user might access a file on this server using any one of these paths:

• \\EmployeeFiles\Records\Doe.docx

• \\EmployeeFiles.FESFTest.com\Records\Doe.docx

• \\10.0.0.10\Records\Doe.docx

• \\10.0.0.11\Records\Doe.docx

In each of these cases, the Policy DLL will see the server name as specified by the requestor. Thus, if the Policy DLL is

using a strict path based policy these paths may appear to represent different files located on different servers. If the

Policy DLL requires a unique canonical name to represent the server, the Policy DLL must extract the server

component of the supplied server and share information and use an external source to resolve the name.

Another interesting case is when the user accesses a network share via a drive letter mapping. For example, a user

may map her Z: drive to the \\EmployeeFiles\Records share. If the user then accesses Z:\Doe.docx, the Policy DLL will

not see the drive letter based path in its callbacks. As stated previously, FESF always passes the Policy DLL a standard

UNC path, even if the file access was made via a drive letter mapping. Note that the server component of the path is

still subject to the ambiguity specified above, but in this case it is dependent on the server name format used when

the drive letter mapping was created.

Finally, please note that like network paths, FESF does not attempt to do normalization of hard-links. Thus, a given

file can have numerous hard-links that point to it. Unless you’re aware of this, you can may at times get unexpected

results, including as result values from a function such as GetExecutablePathForThreadId.

file://///EmployeeFiles/Records/Doe.docx
file://///EmployeeFiles.FESFTest.com/Records/Doe.docx
file://///10.0.0.10/Records/Doe.docx
file://///10.0.0.11/Records/Doe.docx
file://///EmployeeFiles/Records%20share

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

0

If the volume GUID supplied is FE_SHADOW_VOLUME_GUID , the path supplied represents a file located on a local

shadow volume. Shadow volumes do not have volume GUIDs and thus this GUID is meaningful only within the bounds

of the FESF Policy DLL interface and as input to certain FesfDs APIs. Paths to files on shadow volumes carry the

shadow volume “device name”. This can be used as input to find out more about the shadow volume. For instance,

the VSS APIs provide such support. A file on a shadow volume can be opened by constructing a UNC file name by

appending the file name to the shadow volume device name and prepending the while with \\?\GlobalRoot\

Thus:

\\?\GlobalRoot\device\HarddiskVolumeShadowCopy9\dir\file

4.7 A Note About Raw File Access
As previously described, FESF encrypted files are stored using an On Disk Structure (ODS) that is proprietary to FESF

and subject to change in subsequent FESF releases. Remember that the only supported mechanism for retrieving and

updating the Policy DLL supplied Header Data is via documented FESF functions. It is an architectural violation for a

Solution Component to bypass the supported FESF functions and instead use raw access to manually update any

portion of the FESF ODS, including the Header Data.

Finally, because when we talk about encrypting files we’re usually dealing with security, it’s useful to keep in mind the

fact that any application that has write access to a file can change all or part of the that file’s contents. This applies

equally to FESF encrypted files as it does to ordinary unencrypted files. When an application is given raw write access

to an FESF encrypted file, that application could potentially overwrite or otherwise damage the file. Again, this is no

different than any file on Windows that relies on a specific file format (whether that’s an executable image, a

database file, or a Word document).

4.8 Arranging for FesfPolicy to Load Your Policy DLL
The FESF Policy Service loads the Policy DLL dynamically during system startup, using the standard Windows

LoadLibrary function. The Policy DLL is loaded based on the file specification store in the Registry under the following

path:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\FESFPolicy\Parameters

Value Name: PolicyDll

Value Type: REG_SZ

Value: <String specifying path to the Client's Policy DLL>

In specifying the value, the standard rules for how LoadLibrary interprets the provided string apply. See the

documentation for the lpFileName parameter for LoadLibrary in MSDN for more information.

There are two things of which to take note when changing the Policy DLL:

1. You must stop and restart the FESF Policy Service (FESFPolicy.exe) for the new Policy DLL to be loaded. The

FESF Policy Service only reads the PolicyDll Registry value during initialization.

2. Be aware that any files that were encrypted by FESF by previous versions of the Policy DLL will be recognized

as encrypted files by FESF. Your Policy DLL may, therefore, be called at PolGetKeyFromHeader with Header

Data that was created by a previous Policy DLL. It is therefore wise to include some identifying information

in the Policy DLL Header Data so that your Policy DLL can validate and recognize the header before using its

contents.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

1

4.9 FESF Policy Service and Kernel Component Logging
To aid in debugging Policy DLL implementations, and also to assist with diagnosing problems with the encryption

subsystem in the field, FESF includes logging facilities.

4.9.1 FesfPolicy Logging
FesfPolicy logs messages to the Windows Event Log. Messages are logged for all unusual and anomalous events,

including both fatal and non-fatal issues. Messages are logged to the Windows Logs\Application\FesfPolicy log.

The FESF Policy Service includes the capability to log messages to the console whenever errors are encountered in its

interactions with the Policy DLL.

To make debugging and testing easier, the FESF Policy Service can be run interactively from the command line

(instead of being installed and run as a Windows service). When you start FesfPolicy interactively, the command line

to use is:

FesfPolicy [-debug | -DEBUG] [logfile]

Starting FesfPolicy interactively and specifying one of the debug switches, will cause the Policy Service to output

debug messages to the stderr (which is the command prompt window or the Visual Studio Output window if

FesfPolicy is run from within Visual Studio).

The two forms of the "debug" switch are equivalent, except that when the uppercase version is used (that is "-

DEBUG") FesfPolicy will issue a debug break point during startup.

When either of the "debug" switches are present, output can optionally be redirected to a file instead of to the

console.

There is also a –SDEBUG option that, when FesfPolicy is run as a service, causes the service to conveniently issue a

breakpoint during startup.

The FESF Policy Service may optionally be compiled to output debug data using OutputDebugString. See the source

code for more information.

4.9.2 FESF Kernel Component Logging
The FESF Kernel Mode Components log basic status messages, including errors, to the Windows System Event Log.

For example, when FESF starts, FesfDt2 logs the message shown in Figure 2.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

2

 Figure 2 -- FESF Kernel Mode Component Logging

5 Building FESF Sources

5.1 Building the Provided Source Code (Windows)
The FESF Software Developer's Kit contains two Visual Studio 2013 solutions, along with the necessary header and

library files to successfully build them. As provided, the solutions build from source without errors or warnings (at

/W4) and pass Visual Studio Code Analysis at the Microsoft Native Recommended Rules level. Code analysis is

enabled for every build so expect build times to be longer than you might otherwise expect.

To build these solutions:

1. Copy the \Src directory from the archive to your development system, where Visual Studio 2013 is installed.

2. Open the FESF user mode solution, \src\UM_FESF\UM_FESF.sln, in Visual Studio and build for the desired

configuration.

3. After building the FESF user-mode solution, build the sample solution, \src\UM_Sample\UM_Sample.sln, in

Visual Studio 2013.

The built user-mode components will be placed in the platform specific directories of the solution tree: debug,

release, x64\debug and x64\release.

5.2 Building the Provided Stand Alone Utility Source Code on Linux
The FESF Software Developer’s Kit also contains two makefiles that can be used to build the Stand-Alone library and

the sample Stand-Alone utilities.

The Stand-Alone sample utilities are provided to illustrate the use of the FesfSa library. Please note that the

provided utilities utilize a demonstration encryption facility that is not compatible with the FESF Sample Solution.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

3

To build Stand-Alone utilities that are compatible with the FESF Sample Solution, you will need to implement

encryption and decryption algorithms that implement AES 256 CBC mode, with ESSIV, and 256 byte blocks.

To build these the Stand-Alone Library and Sample Stand-Alone Utilities:

1. Copy the /Src directory from the archive to your Linux development system.

2. Download the Windows Development Kit on a Windows system, and copy no_sal2.h to an include directory

on your Linux development system.

3. Run make on the Stand-Alone library, from the /src/UM_FESF/FESFSa/ directory

4. Run make on the Stand-Alone encryption/decryption sample, from the /Src/UM_Sample/SampSaEncDec

directory.

The build user-mode components will be placed in the same directory as the makefile.

5.3 Building and Installing Your Own Solution
The single most important thing you can do to help ensure the success of your Solution development project is for

development team members to thoroughly read and understand the FESF Solution Developer's Guide (provided in

the Docs directory of the FESF Software Developer's Kit). This guide should tell you most of what you need to be able

to successfully design and develop a product using FESF.

Looking at the FESF Sample Solution will illustrate where the various header (.h) and type library (.tlb) files are located

in the FESF development kit.

While the structure of your source tree is certainly up to you, we recommend locating your Client Solution directory

as a peer (that is, on the same directory level) of the UM_FESF directory. We think this will make reference to the

FESF components easier.

5.3.1 Supported Toolset
The FESF V1.5 Release supports Visual Studio 2017. The Stand-Alone linux components are supported by versions of

g++ that have C++11 support.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

4

6 Notes on Installing FESF with Your Solution
When it comes time to creating a kit for your Client Solution, you will likely create a procedure that installs both your

Solution components and the FESF components on a target system. The steps required to install FESF include the

following:

• Copy the appropriate kit directory to the test system where your solution will be installed. Let’s assume you

copy it to “C:\Program Files\Osr\FESF V1.5”.

• Install the FESF kernel-mode drivers: There are 4 drivers that comprise the kernel mode portion of FESF –

osrsupport.sys, osrisolate.sys, osrds2.sys and osrdt2.sys. The drivers can be installed via their associated INF

files. As of the FESF V1.3 Release, the release versions of the FESF kernel mode components in the kit

directory are signed by OSR and attestation signed by Microsoft.

Note that after installing each of the drivers via their associated INF files, the installation will ask you if you

want to reboot now or later. Select later and complete all installation steps before rebooting.

One potential method you may choose to install the drivers from your custom installation application (that

properly uses the INF files) is to use DIFxApp – the Driver Install Frameworks for Applications. There are, of

course, other equally good options. However, we do urge you to be sure that whatever option you choose

does use the provided INF files, as recommended by Microsoft.

• Install the FESF user mode component FESFPolicy.exe: This service can be installed from an elevated

command prompt using Microsoft Windows tool sc.exe with the following commands:

C:\> sc create FESFPolicy type= own start= auto error= normal binPath=

”C:\Program Files\Osr\FESF V1.5\FESFPolicy.exe” depend=

OSRIsolate/OsrDs2/OsrDt2 DisplayName= ”OSR FESF Policy Service”

Note that the equal sign (“=”) is part of the option name and that a space is required between the equal sign

and the value.

Depending on the technology you choose for your custom installer, set up the installation of this user-mode

service based on the parameters shown in the above command line.

• Install the FESF user mode component FESFDs.exe: This service can be installed from an elevated command

prompt, as follows:

C:\> C:\Program Files\Osr\FESF V1.5\FESFDs.exe /Service

Note that the first time this service is run it will be self-registered as an out-of-process COM server.

Depending on the custom installation technology chosen, set up the installation of this service based on the

information supplied here.

• Register the FESF utility DLL FESFUtility.dll as an in-process COM server: This dynamic link library can be

registered using the Microsoft Windows tool regsvr32.exe:

C:\> Regsvr32 FesfUtility.dll

Depending on the installation technology chosen, set up the registration of this DLL based on the information

supplied here.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

5

• Create a Registry value of type REG_SZ under the path:

HKLM\SYSTEM\CurrentControlSet\Services\FESFPolicy\Parameters\PolicyDLL

that contains a path to your own policy DLL.

• Install/set up any additional components that are required for your solution.

6.1.1 How to Rename your Drivers
We do not recommend changing the names of the OSR-supplied kernel-mode drivers in FESF V1.5. We have

performed very limited testing with drivers using other than the default names. Still, we understand that some

Clients may desire to customize the name of their kernel-mode components. With the warning above, we provide

this guidance for those Clients.

If you decide to rename the drivers or their Filter Manager Instances, you will need to make the following

configuration changes:

• Provide FESFPolicy.exe with the name of the DT Driver (default is OsrDt2) by setting the following REG_SZ

value to the driver name:

HKLM\SYSTEM\CurrentControlSet\Services\FESFPolicy\Parameters\DtDriverName

NOTE: Ensure that this is correct! Setting the wrong value will apparently work, but your configuration

information will not be communicated to the Driver. You can test this (after starting the service) by checking

to see whether the key HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Algorithms has

subsidiary keys.

• Provide the Dt driver with the name of the Isolate and the Ds drivers (defaults are OsrIsolate and OsrDs2,

respectively) by setting the following REG_SZ values to the driver names:

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters\IsolateDriverName

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters\DsDriverName

• If you change the name of the Instances that the drivers attach as (not recommended), this information must

be provided to the Dt driver by setting the following REG_SZ values under the key:

HKLM\SYSTEM\CurrentControlSet\Services\<DtDriverName>\Parameters

o IsolateInstance – The identifier for the Isolate driver Instance (default is “Isolate Instance”)

o DsInstance – The identifier for the Ds driver instance (default is “Ds Instance”)

o UpperInstance – The identifier for the Dt’s upper instance (default is “DtUpperInstance”)

o LowerInstance – The identifier for the Dt’s lower instance (default is “DtLowerInstance”)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

6

Policy DLL Callback Function Reference

The functions described in this section are prototypes for callbacks that may be implemented by the Client Solution's

Policy DLL. Some of these callbacks are required, others are optional. The status of each function is noted in that

function's description.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

7

About Implementing Your Callback DLL

Regarding SAL Annotations

If you look at PolDllApi.h, where the FESF Policy DLL structures and callback functions are all defined, you'll

almost certainly notice that the function prototypes for the callback functions are filled with what might look

to you to be strange notes. For example:

Success(return == true)
FESFAPI
POL_GET_KEY_NEW_FILE(
 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,
 In DWORD ThreadId,
 _Outptr_result_bytebuffer_(*PolHeaderDataSize) PVOID *PolHeaderData,
 Out _Deref_out_range_(>, 0) DWORD *PolHeaderDataSize,
 _Outptr_result_z_ LPCWSTR *PolUniqueAlgorithmId,
 _Outptr_result_bytebuffer_(*PolKeySize) PVOID *PolKey,
 Out _Deref_out_range_(>, 0) DWORD *PolKeySize,
 _Outptr_result_maybenull_ PVOID *PolCleanupInfo
);

All the weird stuff that doesn't look like C++ are "annotations" in Microsoft source-code annotation

language (SAL). These annotations describe to the compiler and to Visual Studio Code Analysis how the

various parameters of a function are to be used. We're big fans of SAL Annotations here at OSR because

they've helped us find and prevent more bugs to date than we could ever count. You can read a bit about

SAL Annotations in our blog post: http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-

beautiful/

How do these annotations affect you? Well, mostly, they won't. Except that if you enable Visual Studio Code

Analysis you'll be able to find problems with how you're implementing your Policy DLL callbacks more

quickly.

There is one interesting issue that you'll encounter during implementation, however. And that issue is that

you will almost certainly not want to duplicate all the SAL Annotations when you declare or define your

callback function. In other words, when you write the code that implements POL_GET_KEY_NEW_FILE, you

probably won't want to have to include the SAL for each of your parameters. And, fortunately, that's easy to

avoid.

When declaring a callback function in your Policy DLL's header file, we recommend that you use the type

definition that we provide in the first line of the Syntax section of the documentation. The location of the

type definition is shown in Figure 3.

In your implementation file, when you define the code for your callback function, we suggest that you use

the single annotation _Use_decl_annotations_. This will avoid you having to duplicate the annotations, and

leave your source code clean and easy to read.

We've provided an example of this approach below.

http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-beautiful/
http://www.osr.com/blog/2015/02/23/sal-annotations-dont-hate-im-beautiful/

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

8

If you're implementing the PolGetKeyNewFile callback, you'd declare your function in your header file like

this:

POL_GET_KEY_NEW_FILE MyPolicyDllGetNewFileKey;

And in your implementation file, where you define your function, your code would look like this (note the

use of _Use_decl_annotations_ has been highlighted):

_Use_decl_annotations_
bool MyPolicyDllGetNewFileKey(
 FE_POLICY_PATH_INFORMATION *PolicyPathInfo,
 DWORD ThreadId,
 PVOID *PolHeaderData,
 DWORD *PolHeaderDataSize,
 LPCWSTR *PolUniqueAlgorithmId,
 PVOID *PolKey,
 DWORD *PolKeySize,
 PVOID *PolCleanupInfo)
{
 //
 // Get the fully qualified executable path
 //
 CComBSTR exePath;
 HRESULT hr = g_pFesfUtil->GetExecutablePathForThreadId(ThreadId, &exePath);

 if (FAILED(hr))
 {
 return false;
 }
 // ... and the rest of your function goes here...

Combining the use of the Type Definition and _Use_decl_annotations_ will get you all the benefits of using

SAL Annotations for your callbacks, without having to look at any of the ugly annotation text.

Figure 3 -- Type Definition

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
2

9

PolicyDllInit callback function

A Policy DLL's PolicyDllInit callback function is the first Policy DLL function called by FESF. A Solution's

Policy DLL is responsible for performing initialization in this function.

Syntax

bool

PolicyDllInit(

 VOID

)

{ ... }

Parameters

(none)

Return value

If PolicyDllInit succeeds, it returns (the C++ bool value) true. Otherwise, it returns false.

Returning false will result in FESF not calling any further functions in the Policy DLL.

Remarks

All Policy DLLs must implement this callback function. If this callback function is not implemented, FESF will

run in Offline State. This callback must be named PolicyDllInit, and is the only Policy DLL callback that the

FESF Policy Service locates by name.

A Policy DLL's PolicyDllInit callback function is called by FESF to allow the Policy DLL to perform

initialization. The Policy DLL first performs any internal initialization it may require and then must call

FePolSetConfiguration.

In terms of FESF, the primary operation performed by the Policy DLL within PolicyDllInit is to build an

FE_POLICY_CONFIG structure and pass a pointer to this structure to FESF by calling FePolSetConfiguration.

The FE_POLICY_CONFIG structure contains the following information:

• The version of the FE Policy Interface supported by the Policy DLL.

• Whether FESF Policy Caching should be enabled.

• Default offline behaviors for hard link creation, rename operations, and inconsistent file handling.

• A list of one or more CNG Algorithms and associated properties, along with a unique algorithm

identifier (the Algorithm ID) that will be used by the Policy DLL to refer to each.

• Pointers to the Policy callback functions that are implemented by the Policy DLL.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

0

As soon as FePolSetConfiguration has been called, FESF will begin calling callbacks in the Policy DLL.

To enable clean-up operations FESF will call the Policy DLL's PolUnInit callback function during shutdown.

Note that PolUnInit is called through the pointer provided in the FE_POLICY_CONFIG structure and is not

located by name.

Examples

For an example implementation of PolicyDllInit, see the documentation for FePolSetConfiguration.

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

1

PolGetPolicyNewFile callback function

A Policy DLL's PolGetPolicyNewFile callback function determines whether a new file should be created in

encrypted or non-encrypted format.

Syntax

POL_GET_POLICY_NEW_FILE PolGetPolicyNewFile;

FE_POLICY_RESULT

PolGetPolicyNewFile(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In DWORD GrantedAccess,

 In DWORD CreateAction

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being created.

ThreadId [in]

The identifier of the thread creating the file.

GrantedAccess [in]

A bitmask representing the File Access Rights that the thread creating the file has been granted. File Access

Rights are represented by standard Windows-defined constants as follows:

FILE_READ_DATA

0x001 The right to read the file data.

FILE_WRITE_DATA

0x002 The right to write data to the file.

FILE_APPEND_DATA

0x004 The right to append data to the file.

FILE_READ_EA

0x008 The right to read extended file attributes.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

2

FILE_WRITE_EA

0x010 The right to write extended file attributes.

FILE_EXECUTE

0x020

For a native code file, the right to execute the file. This access

right given to scripts may cause the script to be executable,

depending on the script interpreter.

FILE_READ_ATTRIBUTES

0x080 The right to read file attributes.

FILE_WRITE_ATTRIBUTES

0x100 The right to write file attributes.

CreateAction [in]

A value indicating the action taken as a result of the thread's CreateFile call. The CreateAction will be one of

the following constant values:

POL_CREATE_ACTION_SUPERSEDED

0x000
An existing file was deleted and a new file was

created in its place.

POL_CREATE_ACTION_OPENED

0x001 An existing file was opened.

POL_CREATE_ACTION_CREATED

0x002 A new file was created.

POL_CREATE_ACTION_OVERWRITTEN

0x003 An existing file was overwritten.

See the Remarks section for additional information regarding the meaning of these parameters.

Return value

The PolGetPolicyNewFile callback function returns an enumeration value of the type FE_POLICY_RESULT

indicating the encryption policy for a new file that is being created.

To cause the file to be created with encrypted data, PolGetPolicyNewFile returns the enumeration value

FE_POLCY_ENCRYPT_DECRYPT. To cause the file to be created with non-encrypted (raw, cleartext) data,

PolGetPolicyNewFile returns the enumeration value FE_POLICY_RAW.

If PolGetPolicyNewFile cannot specify an encryption policy for the newly created file, for example due to an

error in processing, PolGetPolicyNewFile returns the enumeration value FE_POLICY_FAIL. This will cause the

thread's CreateFile operation to fail with an error.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

3

Remarks

All Policy DLLs must implement this callback function.

A Policy DLL's PolGetPolicyNewFile callback function is called by FESF to determine the policy for a new file.

Policy defines whether the data written by the thread indicated by ThreadID will be stored encrypted or

unencrypted. The policy for a given file can be based on the parameters passed into this function as well as

any additional information PolGetPolicyNewFile acquires on its own.

Given the ThreadID provided in this callback, a Solution can call FESF-provided helper functions to retrieve

information about the calling thread, including the directory and file name of the executing program and the

Security Identifier (SID) of the account under which the thread is running. Given the SID, the Solution can

get the associated username (for example, one way to do this in C++ is by calling the Windows functions

ConvertStringSidToSid and LookupAccountSid).

Whenever PolGetPolicyNewFile returns FE_POLCY_ENCRYPT_DECRYPT, FESF will call the Policy DLL at its

PolGetKeyNewFile callback function to retrieve the Algorithm ID, Key, and Policy DLL Header Data for the file.

It is important to understand that FESF considers all of the following "new files" and will therefore call

PolGetPolicyNewFile when opening:

• A file on a supported file system that previously did not exist. In this case CreateAction will be

POL_CREATE_ACTION_CREATED.

• A file on a supported file system that is not encrypted by FESF and is zero data bytes in length. . In

this case CreateAction will be POL_CREATE_ACTION_OPENED.

• A file on a supported file system that is either encrypted or not encrypted by FESF and is the subject

of a "destructive create." A destructive create is one with a CreateAction of

POL_CREATE_ACTION_SUPERSEDED or POL_CREATE_ACTION_OVERWRITTEN.

The POL_CREATE_ACTION_* values are direct translations of Windows native FILE_* CreateDisposition values.

You can read more about the specific meaning of each of these values in the MSDN documentation for the

Windows NtCreateFile function. This documentation makes clear the difference between, for example,

POL_CREATE_ACTION_SUPERSEDED and POL_CREATE_ACTION_OVERWRITTEN.

When FESF Policy Caching is enabled, if the process owning the ThreadID opens this file in the future with the

same access described by GrantedAccess, FESF may automatically grant FE_POLCY_ENCRYPT_DECRYPT

access to this file. This can help to reduce system overhead, by avoiding a future call to

PolGetPolicyExistingFile. For more information, see FESF Policy Caching.

PolGetPolicyNewFile is called as part of Windows' processing a CreateFile call made by the thread indicated

by ThreadID for the file described by PolicyPathInfo. The call to PolGetPolicyNewFile occurs after CreateFile

has succeeded but before the final result is returned to the thread. Because the PolGetPolicyNewFile callback

is blocking CreateFile from completing, processing in this function must be prompt.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

4

Policy DLLs should return FE_POLICY_FAIL from their PolGetPolicyNewFile callback only when absolutely

necessary. Because PolGetPolicyNewFile is called after Windows CreateFile processing has completed,

returning FE_POLICY_FAIL will result in a new zero length file being created or, perhaps, a previously existing

file being overwritten with a new zero length file. The specific action taken as a result of CreateFile is

indicated by CreateAction. For more information see Returning Failures from Policy Callbacks.

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

5

PolGetKeyNewFile callback function

A Policy DLL's PolGetKeyNewFile callback function provides key material for a new file that is to be stored in

encrypted format.

Syntax

POL_GET_KEY_NEW_FILE PolGetKeyNewFile;

bool

PolGetKeyNewFile(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 Out PVOID *PolHeaderData,

 Out DWORD *PolHeaderDataSize,

 Out LPCWSTR *PolUniqueAlgorithmId,

 Out PVOID *PolKey,

 Out DWORD *PolKeySize,

 _Outptr_result_maybenull_ PVOID *CleanupInfo,

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being

created.

ThreadId [in]

The identifier of the thread creating the file.

PolHeaderData [out]

A pointer to a storage area allocated by the Policy DLL containing Policy DLL defined Header Data

for FESF to store with the newly created file. FESF calls the Policy DLL's PolFreeHeader callback

function when it no longer needs the header data.

PolHeaderDataSize [out]

The size, in bytes, of the header data returned in the buffer pointed to by PolHeaderData.

PolUniqueAlgorithmId [out]

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

6

A pointer to a wide character string representing the encryption algorithm and properties to be used

to encrypt and decrypt file data. PolUniqueAlgorithmId must match one previously specified by the

Policy DLL in the FE_POLICY_CONFIG structure passed to FePolicySetConfiguration.

PolKey [out]

A pointer to a storage area allocated by the Policy DLL containing an encryption key data. FESF will

pass this key data to the CNG cryptographic algorithm provider indicated by Algorithm. FESF calls

the Policy DLL's PolFreeKey callback function when it no longer needs the key data and the allocated

storage can be freed.

PolKeySize [out]

The size, in bytes, of the key in the buffer pointed to by PolKey.

CleanupInfo [out, opt]

A pointer to a Policy DLL defined context value that will be passed to the Policy DLL's

PolReportLastHandleClose callback function. This parameter is optional and may be NULL.

Return value

To indicate success, and that it is supplying valid values for all output parameters, the

PolGetPolicyNewFile callback function returns true. Otherwise, it returns false.

If false is returned, the thread's CreateFile operation will fail with an error. See the Remarks section for

more information on the consequences of returning false.

Remarks

All Policy DLLs must implement this callback function.

A Policy DLL's PolGetKeyNewFile callback function is called by FESF to determine the encryption algorithm

and key data for a new file that will be stored in encrypted format. This function is always called after a call to

PolGetPolicyNewFile has returned FE_POLICY_ENCRYPT_DECRYPT.

Prior to the first write to a file stored in FESF encrypted format, FESF stores the Policy DLL Header Data

returned in PolHeaderData from this function as well as certain FESF control information in the file. FESF

stores the Header Data exactly as it is provided by the Policy DLL. FESF does not encrypt this data.

Once a file's data has been encrypted by FESF, when the file is opened for encrypt/decrypt access and FESF

does not already have key information for the file, the Header Data will be retrieved from the file and

returned to the Policy DLL at its PolGetKeyFromHeader callback function. Given this Header Data the Policy

DLL must be able to derive the same encryption Algorithm ID, Key Data, and Key Size that are returned here

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

7

in the PolUniqueAlgorithmId, PolKey, and PolKeySize parameters. See the description of the

PolGetKeyFromHeader callback function for more information.

Note that encryption key data is interpreted by FESF as a transparent block of data that it passes to the CNG

provider, for use as an encryption key. For custom CNGs this transparent key data could be an indirect

reference to something maintained by the custom CNG that provides the actual symmetric key used to

encrypt and decrypt the file's data.

The CleanupInfo parameter should be set to NULL and is reserved for future use.

PolGetKeyNewFile is called as part of Windows' processing a system service call (such as CreateFile) made by

the thread indicated by ThreadID for the file described by PolicyPathInfo. The call to

PolGetKeyNewFile occurs after the system service call has succeeded but before the final result is returned to

the thread. Because the PolGetKeyNewFile callback is blocking the system service from completing,

processing in this function must be prompt.

Policy DLLs should return false from their PolGetKeyNewFile callback only when absolutely necessary.

Because PolGetKeyNewFile is called after Windows system service processing has completed, returning false

will result in a new zero length file being created or, perhaps, a previously existing file being overwritten with

a new zero length file. For more information, see Returning Failure from Policy Callbacks.

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

8

PolGetPolicyExistingFile callback function

A Policy DLL's PolGetPolicyExistingFile callback function determines whether a specific open instance of an

existing encrypted file should receive encrypted or non-encrypted (raw, cleartext) access.

Syntax

POL_GET_POLICY_EXISTING_FILE PolGetPolicyExistingFile;

FE_POLICY_RESULT

PolGetPolicyExistingFile(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In PVOID PolHeaderData,

 In DWORD PolHeaderDataSize,

 In DWORD GrantedAccess,

 In DWORD CreateAction

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being

opened.

ThreadId [in]

The identifier of the thread opening the file.

PolHeaderData [in]

A pointer to an FESF allocated storage area containing the Policy DLL's Header Data that FESF

retrieved from the file. This data was previously provided to FESF by the Policy DLL as output from a

successful call to PolGetKeyNewFile.

PolHeaderDataSize [in]

The size, in bytes, of the header data provided in the buffer pointed to by PolHeaderData.

GrantedAccess [in]

A bitmask representing the File Access Rights that the thread opening the file has been granted. File

Access Rights are represented by standard Windows-defined constants. See the description of the

GrantedAccess parameter on the PolGetPolicyNewFile call for a list of these constants.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
3

9

CreateAction [in]

A value indicating the action taken as a result of the thread's CreateFile call. See the description of

the CreateAction parameter on the PolGetPolicyNewFile call for a list of these constants.

Return value

The Policy DLL's PolGetPolicyExistingFile callback function returns an enumeration value of the type

FE_POLICY_RESULT that determines FESF's action on subsequent read or write operations via the opened file

handle.

If PolGetPolicyExistingFile returns FE_POLCY_ENCRYPT_DECRYPT, data read from the file will be

transparently decrypted by FESF before it is returned to the reader, and data written to the file will be

transparently encrypted by FESF before it is stored in the file.

If PolGetPolicyExistingFile returns FE_POLCY_RAW, read and write operations on the file will performed on

the data as provided. That is, no transparent encryption or decryption of data will be take place.

If PolGetPolicyExistingFile cannot specify an encryption policy for the file being opened, for example due to

an error in processing, PolGetPolicyExistingFile returns the enumeration value FE_POLICY_FAIL. This will

cause the thread's CreateFile operation to fail with an error. See the Remarks section for more information

on the consequences of returning FE_POLICY_FAIL.

Remarks

All Policy DLLs must implement this callback function.

FESF calls a Policy DLL's PolGetPolicyExistingFile callback function whenever a thread successfully opens an

existing file that contains FESF encrypted data. There are two exceptions:

• When FESF Policy Caching is enabled and policy information has already been cached for the

combination of file, process, and access being processed.

• When the open being processed is a Transacted Open (such as the result of a thread calling

CreateFileTransacted). Transacted Open operations are typically result in raw access being granted.

See the discussion of Transacted Open operations at the section for the PolApproveTransactedOpen

callback.

Note that PolGetPolicyExistingFile is never called when a file containing non-encrypted data is opened.

FESF calls a Policy DLL's PolGetPolicyExistingFile callback function to determine the policy for a specific

CreateFile request on an existing encrypted file. The policy specifies whether a given open request is

granted raw or encrypt/decrypt access to the data in the file. The policy decision can be based on the

parameters passed into this function as well as any additional information PolGetPolicyExistingFile acquires

on its own.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

0

Given the ThreadID provided in this callback, PolGetPolicyExistingFile can call FESF-provided helper functions

to retrieve additional information about the calling thread, including the directory and file name of the

executing program and identity and security information of the user account under which the thread is

running.

If FESF Policy Caching is enabled, FESF will remember the policy decision returned by PolGetPolicyExistingFile.

In this case, if the process owning the ThreadID opens this file in the future with the same access described

by GrantedAccess, FESF will automatically apply the same policy. This helps reduce system overhead by

potentially avoiding a call to PolGetPolicyExistingFile. The duration of this caching behavior lasts as long as

the Windows file cache for this file persists, which in turn depends on numerous factors that cannot be

directly controlled. The FESF Policy Cache can be flushed at any time by the Policy DLL. For more

information, see FESF Policy Caching.

PolGetPolicyExistingFile is called as part of Windows' processing a system service call (such as CreateFile)

made by the thread indicated by ThreadID for the file described by PolicyPathInfo. The call to

PolGetPolicyExistingFile occurs after the system service call has succeeded but before the final result is

returned to the thread. Because the PolGetPolicyExistingFile callback is blocking the system service call from

completing, processing in this function must be prompt.

Because of the asynchronous nature of Windows, in some unusual cases the values provided for

CreateAction can be unexpected. For example, PolGetPolicyNewFile is called when an existing zero length

file is encountered (including a file that is superseded as part of being opened). However, if two threads

open the same file at the same time, and agree to share write access to that file, it is possible for

PolGetPolicyExisitingFile to be called with CreateAction set to POL_CREATE_ACTION_SUPERSEDED, and

there to be no user data in the file. The file will, however, include Policy DLL Header Data and FESF control

information. While it is rare for two threads to share write access to the same file, for one of those thread to

supersede its contents, and for the two threads to attempt to open this shared file at almost exactly the

same time, this is possible. Policy DLLs should therefore not rely on CreateAction always being

POL_CREATE_ACTION_OPENED when PolGetPolicyExistingFile is called.

Also note that there is an inherent risk in providing mixed responses to this call. If a given file is opened for

shared write access and one open is granted FE_POLCY_ENCRYPT_DECRYPT and the other open is granted

FE_POLCY_RAW, there is no way for FESF to ensure that the resulting file, with its potential mixture of

encrypted and decrypted data, contains usable data. In fact, this can even lead to Client Header Data or FESF

metadata being corrupted. This can lead to a situation in which FESF will identify the file as being

inconsistent. See the description of the PolReportFileInconsistent callback for more details.

Policy DLLs should return FE_POLICY_FAIL from their PolGetPolicyExistingFile callback only when absolutely

necessary. Because PolGetPolicyExistingFile is called after Windows CreateFile processing has completed,

returning FE_POLICY_FAIL can result in a previously existing file being superseded of overwritten with a new

zero length file. The specific action taken as a result of CreateFile is indicated by CreateAction. For more

information, see Returning Failure from Policy Callbacks.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

1

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

2

PolGetPolicyDirectoryListing callback

function

In the current and all previous versions of FESF, whenever a program queries the size of a specific file using a handle

that has been given RAW access to the file, the program gets back the raw (that is, uncorrected) file size. This size

includes the size of the file’s data, plus the FESF Metadata including the Solution Header. Similarly, in the current and

all previous versions of FESF, when a program queries the size of a file using a handle that’s been given ENC/DEC

access to the file, FESF returns the corrected size of the file. This size reflects just the size of the data in the file.

A Policy DLL's PolGetPolicyDirectoryListing callback function determines whether the sizes of FESF encrypted files

returned in a directory listing will reflect the raw (uncorrected) or the corrected size of any FESF encrypted files that

are within that directory. Notice that this callback applies specifically to size returned in the directory listing, not the

size returned to an application when it opens a file and then queries the size of that file.

Prior to FESF V1.1, when a directory was queried, FESF always returned the corrected size of the file, just like a

program would get if it had ENC/DEC access and queried the size of an individual file.

Whether the raw or corrected size is returned in a directory listing can be important when applications with RAW

access use the size from the directory listing (as opposed to the size from an individual query for the file size using a

RAW handle) to determine how much of a file to copy. During extended usage testing of FESF V1, we were surprised

to find a number of applications that did this. One specific example we found is the Microsoft OneDrive

application. However, we wouldn’t be surprised if other programs such as certain backup applications behaved

similarly.

Syntax

POL_GET_POLICY_DIRECTORY_LISTING PolGetPolicyDirectoryListing;

FE_POLICY_RESULT

PolGetPolicyDirectoryListing (

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the directory

being opened.

ThreadId [in]

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

3

The identifier of the thread opening the directory.

Return value

The Policy DLL's PolGetPolicyDirectoryListing callback function returns an enumeration value of the type

FE_POLICY_RESULT that determines FESF's action on directory enumerations via the opened file handle.

If PolGetPolicyDirectoryListing returns FE_POLICY_ENCRYPT_DECRYPT, then the file sizes returned, if this handle is

used to enumerate the directory, will be those visible to an application given FE_POLICY_ENCRYPT_DECRYPT in

response to a call to PolGetPolicyExistingFile.

If PolGetPolicyDirectoryListing returns FE_POLICY_RAW, then the enumeration will return the on disk size, which is

the size visible to an application given FE_POLICY_RAW in response to a call to PolGetPolicyExistingFile.

If PolGetPolicyDirectoryListing cannot specify an encryption policy for the file being opened, for example due to an

error in processing, PolGetPolicyDirectoryListing returns the enumeration value FE_POLICY_FAIL. This will cause the

thread's CreateFile operation to fail with an error. See the Remarks section for more information on the

consequences of returning FE_POLICY_FAIL.

Remarks

This function does not have to be implemented by Policy DLLs. If it is not implemented, then all directory

enumerations will see the encrypted size (as if FE_POLICY_ENCRYPT_DECRYPT was always returned) which was the

behavior in versions of FESF prior to V1.1.

FESF calls a Policy DLL's PolGetPolicyDirectoryListing callback function whenever a thread successfully opens a

directory. Its primary use is to ensure that processes get a coherent view of a file system – thus a process which

always sees the RAW view of all files should see the RAW sizes of files in a directory enumeration. This is particularly

important since some applications use the sizes returned in an operation to govern how much data they consume and

if they saw the ENCDEC size then if the file was copied raw it would be truncated.

Given the ThreadID provided in this callback, PolGetPolicyDirectoryListing can call FESF-provided helper functions to

retrieve additional information about the calling thread, including the directory and file name of the executing

program and identity and security information of the user account under which the thread is running.

If FESF Policy Caching is enabled, FESF will remember the policy decision returned by PolGetPolicyDirectoryListing. In

this case, if the process owning the ThreadID opens this file in the future FESF will automatically apply the same

policy. This helps reduce system overhead by potentially avoiding a call to PolGetPolicyDirectoryListing. The duration

of this caching behavior lasts as long as the Windows file cache for this file persists, which in turn depends on

numerous factors that cannot be directly controlled. The FESF Policy Cache can be flushed at any time by the Policy

DLL. For more information, see FESF Policy Caching in the Solution Developer’s Guide.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

4

PolGetPolicyDirectoryListing is called as part of Windows' processing a system service call (such as CreateFile) made

by the thread indicated by ThreadID for the file described by PolicyPathInfo. The call to

PolGetPolicyExistingFile occurs after the system service call has succeeded but before the final result is returned to

the thread. Because the PolGetPolicyExistingFile callback is blocking the system service call from completing,

processing in this function must be prompt.

Policy DLLs should return FE_POLICY_FAIL from their PolGetPolicyDirectoryListing callback only when absolutely

necessary.

Examples

See also

Requirements

Software version FESF V1.1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

PolGetKeyFromHeader callback function

A Policy DLL's PolGetKeyFromHeader callback function returns the key and encryption algorithm for an

existing encrypted file, given the accessing thread ID, the file path and policy header data.

Syntax

POL_GET_KEY_FROM_HEADER PolGetKeyFromHeader;

bool

PolGetKeyFromHeader(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In PVOID PolHeaderData,

 In DWORD PolHeaderDataSize,

 Out LPCWSTR *PolUniqueAlgorithmId,

 Out PVOID *PolKey,

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

5

 Out DWORD *PolKeySize,

 _Outptr_result_maybenull_ PVOID *CleanupInfo,

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the file being

created.

ThreadId [in]

The identifier of the thread creating the file.

PolHeaderData [in]

A pointer to an FESF allocated storage area containing the Policy DLL Header Data that FESF

retrieved from the file. This data was previously provided to FESF by the Policy DLL as output from a

successful call to PolGetKeyNewFile.

PolHeaderDataSize [in]

The size, in bytes, of the header data provided in the buffer pointed to by PolHeaderData.

PolUniqueAlgorithmId [out]

A pointer to a wide character string representing the encryption algorithm and properties to be used

to encrypt and decrypt file data. PolUniqueAlgorithmId must match one previously specified by the

Policy DLL in the FE_POLICY_CONFIG structure passed to FePolicySetConfiguration.

PolKey [out]

A pointer to a storage area allocated by the Policy DLL containing an encryption key data. FESF will

pass this key data to the CNG cryptographic algorithm provider indicated by Algorithm. FESF calls

the Policy DLL's PolFreeKey callback function when it no longer needs the key data and the allocated

storage can be freed.

PolKeySize [out]

The size, in bytes, of the key data in the buffer pointed to by PolKey.

CleanupInfo [out, opt]

A pointer to a Policy DLL defined context value that will be passed to the Policy DLL's

PolReportLastHandleClose callback function. This parameter is optional and may be NULL.

Return value

To indicate success, and that it is supplying valid values for all output parameters, the PolGetKeyFromHeader

callback function returns true. Otherwise, it returns false.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

6

If false is returned, the thread's CreateFile operation will fail with an error. See the Remarks section for

more information on the consequences of returning false.

Remarks

All Policy DLLs must implement this callback function.

A Policy DLL's PolGetKeyFromHeader callback function is called by FESF to determine the encryption

algorithm and key data to be used by the CNG provider to encrypt or decrypt data in an existing FESF

encrypted file. This function is always called after a call to PolGetPolicyExistingFile has returned

FE_POLICY_ENCRYPT_DECRYPT and FESF does not already have key information for the file.

As previously described, encryption key data is interpreted by FESF as an opaque data block that it passes to

the CNG provider, for use as an encryption key. FESF does not interpret or verify this key data. For custom

CNGs this transparent key data could be an indirect reference to something maintained by the custom CNG

that provides the actual symmetric key used to encrypt and decrypt the file's data.

The Policy DLL derives the encryption algorithm and key data from the provided thread, header and

FE_POLICY_PATH_INFORMATION for the file.

The CleanupInfo parameter is reserved for future use.

PolGetKeyFromHeader is called as part of Windows' processing a CreateFile call made by the thread

indicated by ThreadID for the file described by PolicyPathInfo. The call to PolGetKeyFromHeader occurs after

CreateFile has succeeded but before the final result is returned to the thread. Because the

PolGetKeyFromHeader callback is blocking CreateFile from completing, processing in this function must be

prompt.

Policy DLLs should return false from their PolGetKeyFromHeader callback only when absolutely necessary.

Because PolGetKeyFromHeader is called after Windows CreateFile processing has completed, returning false

will result in a new zero length file being created or, perhaps, a previously existing file being overwritten with

a new zero length file. For more information, see Returning Failure from Policy Callbacks.

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

7

Requirements

Software version FESF V1 (and later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

8

PolApproveRename callback function

A Policy DLL's PolApproveRename callback function is called to allow the Policy DLL to approve or reject a file

rename operation taking place on a supported file system.

Syntax

POL_APPROVE_RENAME PolApproveRename;

bool

PolApproveRename(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In FE_POLICY_PATH_INFORMATION *NewPolicyPathInfo

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the original name

of the file being renamed.

ThreadId [in]

The identifier of the thread attempting to rename the file.

NewPolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the proposed

new name of the file being renamed.

Note that if Windows has not been able supply the new name then the

FE_POLICY_PATH_TARGET_NAME_INVALID flag will be set and the RelativePath will be invalid.

This is often provoked by renaming a file “through” a directory symbolic link to a network Share

Return value

To approve the rename operation and let it proceed, the PolApproveRename callback function returns true.

Otherwise, it returns false.

If false is returned, FESF will fail the thread's rename operation. How the requesting thread/process reacts

to having this error returned is dependent on the thread/process.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
4

9

Remarks

A Policy DLL's PolApproveRename callback function is called by FESF to allow the Policy DLL to approve or

reject a proposed rename operation for security reasons.

Implementation of this callback function is optional for a Policy DLL. If this function is not implemented,

FESF uses the behavior specified during initialization in the field OfflineBehavior.ApproveRename.

Solution developers should be VERY cautious about returning "false" from this callback as a result of what

should be non-fatal errors. For example, if you return "false" (thereby disallowing the requested rename

operation) as a result of a function such as GetExecutablePathForThreadId or GetSidForThreadId failing

due to a system protection issue, important Windows system activities such as Windows Update can fail. We

advise you to use caution and good engineering judgement.

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

0

PolApproveCreateLink callback function

A Policy DLL's PolApproveCreateLink callback function is called to allow the Policy DLL to approve or reject

the creation of a hard link on a supported file system.

Syntax

POL_APPROVE_CREATE_LINK PolApproveCreateLink;

bool

PolApproveCreateLink(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In DWORD ThreadId,

 In FE_POLICY_PATH_INFORMATION *LinkPolicyPathInfo

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the name of the

file to which the hard link is being created.

ThreadId [in]

The identifier of the thread attempting to create the hard link.

LinkPolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the proposed

new hard link name.

Note that if Windows has not been able supply the new name then the

FE_POLICY_PATH_TARGET_NAME_INVALID flag will be set and the RelativePath will be invalid.

This is often provoked by creating a link “through” a directory symbolic link to a network Share

Return value

To approve the creation of the hard link, the PolApproveCreateLink callback function returns true. Otherwise,

it returns false.

If false is returned, FESF will fail the thread's CreateHardLink operation. How the requesting

thread/process reacts to having this error returned is dependent on the thread/process.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

1

Remarks

A Policy DLL's PolApproveCreateLink callback function is called by FESF to allow the Policy DLL to approve or

reject the creation of a hard link on a supported file system.

Implementation of this callback function is optional for a Policy DLL. If this function is not implemented,

FESF uses the behavior specified during initialization in the field OfflineBehavior.ApproveCreateLink.

Solution developers should be VERY cautious about returning "false" from this callback as a result of what

should be non-fatal errors. For example, if you return "false" (thereby disallowing the requested hardlink

operation) as a result of a function such as GetExecutablePathForThreadId or GetSidForThreadId failing

due to a system protection issue, important Windows system activities such as Windows Update can fail. We

advise you to use caution and good engineering judgement.

Examples

See also

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

2

PolApproveTransactedOpen callback

function

A Policy DLL's PolApproveTransactedOpen callback function is called to allow the Policy DLL to approve or

reject a transacted open. All such opens are given RAW access and this call provides a mechanism to “veto”

such raw access.

Syntax

POL_APPROVE_TRANSACTED_OPEN PolApproveTransactedOpen;

bool

PolApproveTransactedOpen (

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo,

 In LPGUID TransactionUnitOfWork,

 In DWORD ThreadId,

 In DWORD GrantedAccess,

 In DWORD CreateAction

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the name of the

file to be transactionally opened (for example, by a user having called the Windows function

CreateFileTransacted).

TrannsactionUnitOfWork [in]

 The ID (unit of work) of the transaction which this create is part of

ThreadId [in]

The identifier of the thread attempting to open the file.

GrantedAccess [in]

A bitmask representing the File Access Rights that the thread opening/creating the file/directory has

been granted. See PolGetPolicyExistingFile for more details

CreateAction [in]

A value indicating the action taken as a result of the thread's CreateFile call. See the description of

the CreateAction parameter on the PolGetPolicyNewFile call for a list of these constants.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

3

Return value

To approve the transactional open, the PolApproveTransactedOpen callback function returns true. Otherwise,

it returns false.

If false is returned, FESF will fail the open. How the requesting thread/process reacts to having this error

returned is dependent on the thread/process.

Remarks

A Policy DLL's PolApproveTransactedOpen callback function is called by FESF to allow the Policy DLL to

approve or reject the transactional open of a file.

Implementation of this callback function is optional for a Policy DLL. If this function is not implemented,

FESF will allow transactions, which is the FESF behavior prior to FESF V1.1.

Solution developers should be VERY cautious about returning "false" from this callback. Many critical parts

of the system (notably Windows Update) rely on transacted opens and failing them will (at best) cause such

operations to fail.

Note that if a file was created as a result of a transacted open, then failing the transaction will not cause the

file to be deleted. It is to be expected, however, that the application issuing the transacted open will roll

back the transaction and that will have the effect of deleting the file (which was only visible within the

transaction anyway).

Examples

See also

Requirements

Software version FESF V1.1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

4

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

5

PolReportFileInconsistent callback function

A Policy DLL's PolReportFileInconsistent callback function is called to inform the Policy DLL FESF has

encountered an encrypted file that is in incorrect or invalid format.

Syntax

POL_REPORT_FILE_INCONSISTENT PolReportFileInconsistent;

bool

PolReportFileInconsistent(

 In FE_POLICY_PATH_INFORMATION *PolicyPathInfo

)

{ ... }

Parameters

PolicyPathInfo [in]

A pointer to an FESF allocated FE_POLICY_PATH_INFORMATION structure describing the name of the

file that FESF has found to contain errors.

Return value

To grant the caller raw access to the corrupt file, the PolReportFileInconsistent callback function returns true.

Otherwise, it returns false.

If false is returned, FESF will fail the thread's CreateFile operation. How the requesting thread/process

reacts to having this error returned is dependent on the thread/process.

Remarks

A Policy DLL's PolReportFileInconsistent callback function is called by FESF to inform the Policy DLL that an

FESF encrypted file has been found that has in invalid or inconsistent format. The Policy DLL may choose to

ask FESF to attempt to recover this file, by calling the appropriate function supplied by the FESF Data

Storage Service function.

Files may be reported as being inconsistent for a number of reasons. Generally, a file is considered

inconsistent when FESF is reasonably sure that the file is encrypted but the file has failed one or more

internal sanity checks. For example, this can happen if an application modifies certain portions of a file after

being granted FE_POLICY_RAW access. It can also occur if the file is modified outside of FESF, such as when

FESF is not installed on a system when the file is accessed for write. Inconsistent files are typically not safely

usable until they have been repaired.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

6

Implementation of this callback function is optional for a Policy DLL. If this function is not implemented,

FESF uses the behavior specified during initialization in the field OfflineBehavior.

ApproveCorruptFileAccess.

Examples

See also

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

7

PolReportLastHandleClosed callback

function

A Policy DLL's PolReportLastHandleClosed callback function is called to inform the Policy DLL that the last

handle to a given file has been closed.

Syntax

POL_REPORT_LAST_HANDLE_CLOSED PolReportLastHandleClosed;

VOID

PolReportLastHandleClosed(

 In PVOID CleanupInfo

)

{ ... }

Parameters

CleanupInfo [in]

A Policy DLL defined value that was supplied to either PolGetKeyNewFile or PolGetKeyFromHeader.

This value can be used to identify the file being closed.

Return value

(none)

Remarks

A Policy DLL's PolReportLastHandleClosed callback function is called by FESF to inform the Policy DLL that the

last handle is being closed on a file. This callback allows the Policy DLL to trigger additional processing of

the file. Note that in FESF V1.3 and earlier, when the PolReportLastHandleClosed callback function is called,

the indicated file is still open. Therefore, if any processing is done in PolReportLastHandleClosed, that

processing is typically restricted to queuing work that will be done later by the Solution.

Implementation of this callback function is optional for a Policy DLL, and it is rarely specified. If this function

is not implemented, FESF does not notify the Policy DLL of the last close that takes place for a given file.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

8

Compatibility Note

Starting in FESF V1.4, we anticipate that PolReportLastHandleClosed will be called after the last handle has been

completely closed. This change will make it more likely, but by no means guaranteed, that a Solution that attempts to

open the file in the context of this callback will succeed without encountering a sharing violation.

Note that, even with this change, there will be no guarantee that another handle hasn’t been opened prior to (or

during) the call to PolReportLastHandleClosed. Hence your Solution needs to be constructed to gracefully handle this

possibility.

Examples

See also

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
5

9

PolFreeHeader callback function

A Policy DLL's PolFreeHeader callback function is called to enable the Policy DLL to return the storage that it

previously allocated for Policy DLL Header Data.

Syntax

POL_FREE_HEADER PolFreeHeader;

VOID

PolFreeHeader(

 In PVOID PolHeaderData,

 In DWORD PolHeaderDataSize

)

{ ... }

Parameters

PolHeaderData [in]

A pointer to a Header Data area to be returned that was previously allocated by the Policy DLL.

PolHeaderDataSize [in]

The size, in bytes, of the Header Data area.

Return value

(none)

Remarks

A Policy DLL's PolFreeHeader callback function is called by FESF to allow the Policy DLL to deallocate space

that it previously allocated for storage of Policy DLL Header Data. This Header Data was provided to FESF by

the Policy DLL on return from the PolGetKeyNewFile callback function.

Policy DLLs must implement this callback function.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

0

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

1

PolFreeKey callback function

A Policy DLL's PolFreeKey callback function is called to enable the Policy DLL to return the storage that it

previously allocated for key storage.

Syntax

POL_FREE_KEY PolFreeKey;

VOID

PolFreeKey(

 In PVOID PolKey,

 In DWORD PolKeySize

)

{ ... }

Parameters

PolKey [in]

A pointer to a key data storage area to be returned that was previously allocated by the Policy DLL.

PolKeySize [in]

The size, in bytes, of the key storage area.

Return value

(none)

Remarks

A Policy DLL's PolFreeKey callback function is called by FESF to allow the Policy DLL to deallocate space that

it previously allocated for storage of key data information. This key buffer was provided to FESF by the

Policy DLL on return from the PolGetKeyNewFile or PolGetKeyFromHeader callback function.

This callback function is separate from the PolFreeHeader callback function to allow for different allocation

and return methods for Header Data (which is presumably not security sensitive) and key information (which

is presumably sensitive from a security standpoint). In most Policy DLL implementations PolFreeKey would

overwrite the key storage area with a random data before freeing it.

Policy DLLs must implement this callback function.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

2

Examples

See also

The FESF Sample Solution contains an example implementation of this callback function. This example is

part of the provided UM_Sample Visual Studio Solution, the SampPolicy project, and is located in the file

SampPolicy.cpp.

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

3

PolUnInit callback function

A Policy DLL's PolUnInit callback function is called when the system shuts down.

Syntax

POL_UNINIT PolUnInit;

VOID

PolUnInit(

 VOID

)

{ ... }

Parameters

(none)

Return value

(none)

Remarks

A Policy DLL's PolUnInit callback function is called by FESF to allow the Policy DLL to perform an orderly tear

down of any state.

Policy DLLs need not implement this callback function.

Examples

See also

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

4

FESF Policy Function Reference

The functions in this section are implemented by the FESF Policy Service for exclusive use of the Client's Solution

Policy DLL.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

5

FePolSetConfiguration function

Called by the Policy DLL to provide its desired configuration parameters to FESF.

Syntax

DWORD

FePolSetConfiguration(

 In FE_POLICY_CONFIG * Configuration

)

{ ... }

Parameters

Configuration [in]

A pointer to a FE_POLICY_CONFIG structure that has been filled-in by the Policy DLL to reflect its

desired configuration.

Return value

If the function succeeds, ERROR_SUCCESS is returned.

If the function fails for any reason, an appropriate error code is returned. If a pointer to a required function

is missing from the FE_POLICY_CONFIG structure, ERROR_INVALID_DATA is returned.

Remarks

Every Policy DLL must call this function from within its PolicyDllInit callback function, to establish the

desired configuration and provide pointers to other Policy DLL functions for the FESF Policy Service to call.

Note that the Solution Policy DLL can start to receive callbacks from FESF as soon as this call is made.

Examples

The following example illustrates setting up the FE_POLICY_CONFIG structure and calling

FePolicySetConfiguration within the Policy DLL's PolicyDllInit callback function.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

6

PolicyDllInit(VOID)
{
 FE_POLICY_CONFIG config = {0};
 FE_POLICY_ALGORITHM algorithm;
 FE_POLICY_ALGORITHM_PROPERTY *aesProperty;
 DWORD error;
 bool result;

 //
 // We only use ONE algorithm, thus the size of our structure is
 // constant. This would need to be updated if the number of
 // algorithms used was > 1
 //
 config.Length = sizeof(FE_POLICY_CONFIG);
 config.VersionMajor = FE_POLICY_VERSION_MAJOR;
 config.VersionMinor = FE_POLICY_VERSION_MINOR;

 config.PolGetPolicyNewFile = ExamplePolGetPolicyNewFile;
 config.PolGetKeyNewFile = ExamplePolGetKeyNewFile;
 config.PolGetPolicyExistingFile = ExamplePolGetPolicyExistingFile;
 config.PolGetKeyFromHeader = ExamplePolGetKeyFromHeader;
 config.PolFreeHeader = ExamplePolFreeHeader;
 config.PolFreeKey = ExamplePolFreeKey;

 config.OfflineBehavior.PolApproveCreateLink = true;
 config.OfflineBehavior.PolApproveRename = true;
 config.OfflineBehavior.ApproveCorruptFileAccess = true;
 config.OfflineBehavior.RawDirSize = false;

 config.AccessCache.Enable = true;

 config.AlgorithmsCount = 1;
 config.Algorithms[0] = &algorithm;

 algorithm.PolUniqueAlgorithmId = ExampleUniqueAlgorithmId;
 algorithm.CNGAlgorithmIdentifier = BCRYPT_AES_ALGORITHM;
 algorithm.CNGAlgorithmImplementation = NULL;

 algorithm.PropertiesCount = 1;

 aesProperty = &algorithm.Properties[0];

 aesProperty->CNGPropertyIdentifier = BCRYPT_CHAINING_MODE;
 aesProperty->CNGPropertyValue = BCRYPT_CHAIN_MODE_CBC;
 aesProperty->CNGPropertyValueLength =
 (sizeof(BCRYPT_CHAIN_MODE_CBC) - sizeof(WCHAR));

 error = FePolSetConfiguration(&config);

 if (error == ERROR_SUCCESS) {
 result = true;
 } else {
 result = false;
 }

 return result;

}

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

7

See also

Requirements

Software version FESF V1 (or later)

Library FESFPolicy.lib

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

8

FESFUtility Function Reference

The functions in this section are implemented by the FESFUtility DLL.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
6

9

Using the FesfUtility DLL

The FESFUtility DLL is a COM in-process server. It exports the functions describe in this section for use by

Client Solutions when FESF is installed and running on the system. Note FesfUtility exports two Interfaces as

described below.

Type Library: \UM_FESF\UMLIB\FESFUTILITY.TLB

CLSID: FesfUtil {a5cf6c1a-fba3-46e9-9a06-99e3879337a3}

IID: IFesfUtil {287ae2ac-d46b-478a-b843-fb49d0818958}

IID: IFesfUtil2 {2a5ed4b-2b5d-4cca-abe4-2246c994edc3}

Note: Please use the definitions provided in the type library as the GUIDs are subject to change.

Starting with FESF V1.3 the Interface IFesfUtil2 is present. This Interface provides support for all the original

functions available via the IFesfUtil Interface, as well the ReadHeaderUnsafe and UpdateHeaderUpdate

families of functions, which are exclusively available via the IFesfUtil2 Interface.

Functions in the FesfUtility DLL can be invoked using standard COM mechanisms. This is illustrated in the

following example.

In the Header file:

 #import "..\..\UM_FESF\UMLib\FESFUTILITY.tlb" no_namespace raw_interfaces_only
 IFesfUtil *m_spUtil;

In the executable function:

 // Initialize COM
 ::CoInitializeEx(nullptr, COINIT_MULTITHREADED);

 hr = ::CoCreateInstance(__uuidof(FesfUtil),
 nullptr,
 CLSCTX_ALL,
 IID_PPV_ARGS(&m_spUtil));
 if (FAILED(hr)) {
 // Could not find the FesfUtil DLL
 ATLTRACE(L"Failed to access FesfUtil: 0x%X\n", hr);
 return E_UNEXPECTED;
 }

 //
 // Is the FESF Policy Service running?
 //
 VARIANT_BOOL running = VARIANT_FALSE;

 hr = m_spUtil->IsFESFServiceRunning(&running);

(code example continues on next page)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

0

 if (!hr != S_OK)
 {

 // the call FAILED? That's odd…
 ::MessageBox(nullptr, L"Call to IsFESFServiceRunning failed?",
 L"Testing", MB_ICONEXCLAMATION | MB_OK);
 return E_FAIL;
 }

 if (!running)
 {
 // service is unavailable
 ::MessageBox(nullptr, L"Service is unavailable or not running",
 L"Testing", MB_ICONEXCLAMATION | MB_OK);
 }

 return S_OK;

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

1

PurgePolicyCacheFile function

Purges data stored in the FESF Policy Cache for a specific file.

Syntax

HRESULT

PurgePolicyCacheFile(

 [in] BSTR FullPath

)

{ ... }

Parameters

FullPath [in]

A string representing the fully qualified path name of the file to be purged.

Return value

If the function succeeds, S_OK is returned.

If the function fails for any reason, an appropriate error code is returned.

Remarks

A Policy DLL may call this function to cause FESF to remove all references to a given file from its Policy

Cache. Note that there may be some delay between the time this function is called and the Policy Cache is

completely purged for the given file.

For more information on FESF Policy Caching see the section FESF Policy Caching in this document.

This function relies on support from the FESF Kernel Mode Components. Note that functions in the FESF

Utility library are only designed for use when FESF is installed and the FESF Kernel Mode Components are

running.

Examples

See also

Requirements

Software version FESF V1 (or later)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

2

DLL FESFUtility.DLL

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

3

PurgePolicyCacheThread function

Purges data stored in the FESF Policy Cache for a specific process, given a Thread ID associated with that

process.

Syntax

HRESULT

PurgePolicyCacheThread(

 [in] int ThreadId

)

{ ... }

Parameters

ThreadId [in]

The identifier of a thread whose process is to be removed from the FESF Policy Cache, or zero to

remove the cached data for all processes from the FESF Policy Cache.

Return value

If the function succeeds, S_OK is returned.

If the function fails for any reason, an appropriate error code is returned.

Remarks

A Policy DLL may call this function to cause FESF to remove all references to a given process, or all processes,

from its Policy Cache. Note that there may be some delay between the time this function is called and the

Policy Cache is completely purged.

Even though this function takes a Thread ID in the ThreadId parameter, the FESF Policy Cache is purged for

all threads in the process that owns the specified thread. If the ThreadId parameter is passed as zero, the

FESF Policy Cache is purged for all threads and all processes.

This function relies on support from the FESF Kernel Mode Components. Note that functions in the FESF

Utility library are only designed for use when FESF is installed and the FESF Kernel Mode Components are

running.

For more information on FESF Policy Caching see the section FESF Policy Caching in this document.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

4

Examples

See also

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

5

GetExecutablePathForThreadId function

Returns the executable path (including name of the image) associated with a given thread.

Syntax

HRESULT

GetExecutablePathForThreadId(

 [in] int ThreadId,

 [out, retval] BSTR* PathBuffer

)

{ ... }

Parameters

ThreadId [in]

The identifier of the thread for which the executable image path is being sought.

PathBuffer [out, retval]

A pointer to a BSTR into which to store the result on success. On return with success, a string

holding the path to the executable image name associated with the thread. On return with an error

status, the contents of PathBuffer are undefined.

Return value

A standard HRESULT value indicating the success or failure of the lookup operation.

Note that this function can fail due to security reasons, when called for certain Windows protected

processes. This is by (Microsoft’s) design and cannot be bypassed.

Remarks

On success, this function returns a fully qualified executable path for the executable image associated with

the thread identified by the provided ThreadId (TID). This function relies on support from the FESF Kernel

Mode Components to ensure that all TIDs, even those of protected processes, can be translated to a path.

This function will return one of four different path formats:

1. Local volume, mount point found

e:\FileTest.exe

2. Local volume, no mount point

\\?\Volume{xxx}\FileTest.exe

3. Network share

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

6

\\Server\Share\FileTest.exe

4. Shadow volume

\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\FileTest.ext

If the thread is owned by the system process, then this function will return “System” as the path.

Note that functions in the FESF Utility library are only designed for use when FESF is installed and the FESF

Kernel Mode Components are running.

Examples

See the example shown at GetSidForThreadId.

See also

The provided Sample Policy DLL (in the UM_Sample solution) contains multiple examples that illustrate the

use of GetExecutablePathForThreadId.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

file://///Server/Share/FileTest.exe

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

7

IsFileEncrypted function

Determines if a given file is stored in FESF encrypted format.

Syntax

HRESULT

IsFileEncrypted(

 [in] BSTR FullPath,

 [out, retval] VARIANT_BOOL* Encrypted

)

{ ... }

Parameters

FullPath [in]

A string containing the fully qualified path of a file to check.

Encrypted [out, retval]

A pointer to a VARIANT_BOOL that will receive the result on success. Set to VARIANT_TRUE if the file

indicated by FullPath is in FESF encrypted format.

Return value

S_OK on success. E_POINTER if the FullPath parameter is not provided. Other standard HRESULT values

may be returned indicating the failure of the operation.

Remarks

If the file indicated by FullPath is encrypted, the HRESULT from this function will be S_OK and the value

returned in Encrypted will be VARIANT_TRUE.

This function relies on support from the FESF Kernel Mode Components. Note that functions in the FESF

Utility library are only designed for use when FESF is installed and the FESF Kernel Mode Components are

running.

Example

// form the fully qualified file path

CString file(basePath + findData.cFileName);

VARIANT_BOOL answer;

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

8

hr = spUtil->IsFileEncrypted(CComBSTR(file), &answer);

bool fileIsEncrypted = (answer == VARIANT_TRUE);

if (fileIsEncrypted)
{
 wprintf(L"%-20ws: is encrypted!\n",
 wcsrchr(file, L'\\') + 1);

 continue;
}

See also

The provided UM_Sample solution contains several examples that illustrates the use of this function.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
7

9

GetFullyQualifiedLocalPath function

Converts a Volume GUID and Relative Path pair into a sting containing a fully qualified path on a local

volume.

Syntax

HRESULT

GetFullyQualifiedLocalPath(

 [in] REFGUID Volume,

 [in] BSTR RelativePath,

 [out, retval] BSTR* FullPath

)

{ ... }

Parameters

Volume [in]

GUID representing a local volume. This GUID may not be the FESF Network Volume GUID

(FE_NETWORK_GUID) or the FESF Shadow Volume GUID (FE_SHADOW_VOLUME_GUID), , and may

not be NULL or empty.

RelativePath [in]

A path, relative to the supplied Volume GUID.

FullPath [out, retval]

A pointer to a BSTR into which to store the result on success.

Return value

A standard HRESULT value indicating the success or failure of the lookup operation.

Remarks

If the FESF Network Volume GUID (FE_NETWORK_GUID) or the FESF Shadow Volume GUID

(FE_SHADOW_VOLUME_GUID) is provided for the Volume argument, the function returns HRESULT E_FAIL.

On return with success, FullPath points to a string holding the fully qualified path for the file on a local

volume. On return with an error status, the contents of FullPath are undefined.

Examples

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

0

See also

The provided UM_Sample solution contains examples that illustrate the use of GetFullyQualifiedLocalPath.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

1

IsFesfServiceRunning function

Determines if the FESF Policy Service (FesfPolicy) is in the running state.

Syntax

HRESULT

IsFesfServiceRunning(

 [out, retval] VARIANT_BOOL* ServiceRunning

)

{ ... }

Parameters

ServiceRunning [out, retval]

A pointer into which to return a value indicating whether FesfPolicy is running.

Return value

If the function succeeds, S_OK is returned.

If the function fails for any reason, an appropriate error code is returned.

Remarks

A Client Solution may call this function to determine if FesfPolicy is actively running. In this case, "actively

running" means that the FESF Policy Service has started, has performed its required initialization, and is

actively processing requests.

Examples

An example of how to invoke this function is provided at the beginning of this section.

See also

The provided UM_Sample solution contains several examples that illustrate the use of this function.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

2

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

3

IsThreadIdInSid function

Determines if the account under which a given thread is running is a member of a given Security Group.

Syntax

HRESULT

IsThreadIdInSid(

 [in] int ThreadId,

 [in] BSTR GroupSid,

 [out, retval] VARIANT_BOOL* IsInGroup

)

{ ... }

Parameters

ThreadId [in]

The Thread ID of a thread to be checked for group membership.

GroupSid [in]

A Security ID (SID) in string describing a Security Group.

IsInGroup [out, retval]

A pointer into which to return a VARIANT_BOOL that on successful completion indicates if the

Security ID under which ThreadId is executing is a member of GroupSid.

Return value

If the function succeeds, S_OK is returned.

If the function fails for any reason, an appropriate error code is returned.

Remarks

IsThreadIdInSid determines if the Security Principle under which a given thread (identified by ThreadId) is

executing is a member of the Security Group identified by GroupSid.

Client Solutions can use this function to determine if the user that's running an application instance

(identified by a Thread ID) is a member of a given Active Directory Security Group. That group could be a

Windows built-in group (such as "Backup Operators") or a custom-defined group (such as "MI5 Agents").

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

4

This function relies on support from the FESF Kernel Mode Components. Note that functions in the FESF

Utility library are only designed for use when FESF is installed and the FESF Kernel Mode Components are

running.

Examples

if (m_User != user) {

 VARIANT_BOOL answer;

 m_pFESFUtil->IsThreadIdInSid(ThreadId, m_User, &answer);

 if (VARIANT_FALSE == answer) {
 return S_OK;
 }
}

See also

The RuleEngine project that is part of the provided UM_Sample solution contains an example that illustrates

the use of this function.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

5

GetSidForThreadId function

Retrieves the Security Identifier under which a given thread is running.

Syntax

HRESULT

GetSidForThreadId(

 [in] int ThreadId

 [out, retval] BSTR* SidString

)

{ ... }

Parameters

ThreadId [in]

The Thread ID of a currently active thread.

SidString [out, retval]

A pointer to a string into which to return the string format of the Security Identifier (SID) under which

the thread is executing.

Return value

If the function succeeds, S_OK is returned.

Note that this function can fail due to security reasons, when called for certain Windows protected

processes. This is by (Microsoft’s) design and cannot be bypassed.

If the function fails for any reason, an appropriate error code is returned.

Remarks

A Client Solution may call this function to retrieve the Security Identifier (SID) under which a given thread is

executing.

This function relies on support from the FESF Kernel Mode Components. Note that functions in the FESF

Utility library are only designed for use when FESF is installed and the FESF Kernel Mode Components are

running. If GetSidForThreadId is called when the FESF Kernel Mode Components are not running, an error

value is returned.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

6

Example

The following example is taken from the Sample Policy DLL (SampPolicy) that is part of the UM_Sample

project.

//
// Get the SID (Security ID) based on the calling thread. This uniquely
// identifies the user that created the thread, so it can be used in
// user-based policy decisions. The FesfUtil dll provides a helper for this.
//
CComBSTR sid;
HRESULT hr = g_pFesfUtil->GetSidForThreadId(ThreadId, &sid);
if (FAILED(hr))
{
 ATLTRACE(L">>>Failed to obtain SID for thread %d : %x\n", ThreadId, hr);
 return FE_POLICY_RAW;
}

//
// Get a path to the executable that is creating the file. FesfUtil provides
// a helper for this as well.
//
CComBSTR exePath;
hr = g_pFesfUtil->GetExecutablePathForThreadId(ThreadId, &exePath);

if (FAILED(hr))
{
 ATLTRACE(L">>>Failed to obtain executable file for thread %d : %x\n", ThreadId, hr);
 return FE_POLICY_RAW;
}

//
// We've gathered all the sample policy manager needs to make a decision,
// so ask it what we should do with the file. We could make that decision
// here if it were more convenient to do so.
//
VARIANT_BOOL encdec = VARIANT_FALSE;
hr = g_pPolicyManager->GetPolicyNewFile(
 &PolicyPathInfo->VolumeGuid, CComBSTR(PolicyPathInfo->RelativePath),
 exePath, sid, ThreadId, &encdec);

See also

The provided UM_Sample solution contains several examples that illustrate the use of this function.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

7

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

8

GetTrueFileSize function

Retrieves the actual on-disk size of an FESF encrypted file, including the size of the Client Solution Policy

Header and any FESF metadata.

Syntax

HRESULT

GetTrueFileSize(

 [in] BSTR FullPath,

 [out, retval] __int64* TrueSize

)

{ ... }

Parameters

FullPath [in]

A string containing the fully qualified path to an FESF encrypted file.

TrueSize [out, retval]

A pointer to a 64-bit integer location into which the actual on-disk size of the file is stored.

Return value

If the function succeeds, S_OK is returned.

If the function fails for any reason, an appropriate error code is returned.

Remarks

When FESF encrypts a file, additional data is stored along with that file. This data includes both the Client

Solution's Policy Header, and a small amount of FESF metadata. When file size information is retrieved by

standard means, FESF corrects the file size to represent only the size of the data in the file. Therefore, the file

size ordinarily does not reflect the actual number of bytes a given file occupies on disk.

A Client Solution may use the GetTrueFileSize function to retrieve the actual number of bytes that a file

occupies on disk, including the Solution's Policy Header and FESF metadata.

The calling COM client must be able to access the file for this operation to succeed.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
8

9

Examples

See also

The UM_FESF solution contains an example that illustrates the use of GetTrueFileSize.

Requirements

Software version FESF V1 (or later)

DLL FESFUtility.DLL

Supported FESF State FESF Online State.

Type Library \UM_FESF\UMLIB\FESFUTILITY.TLB

IID IFesfUtil (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

0

ReadHeaderUnsafe and

ReadHeaderUnsafeFQP functions

Provides a mechanism to read the header of an encrypted file, even if the file is currently in use by another

process.

Syntax

HRESULT

ReadHeaderUnsafe(

 [in] REFGUID VolumeGuid,

 [in] BSTR Path,

 [out, retval] VARIANT *Header

)

HRESULT

ReadHeaderUnsafeFQP(

 [in] BSTR Fqp,

 [out, retval] VARIANT *Header

)

Parameters

VolumeGuid [in]

GUID representing a local volume. This GUID must not be the FESF Network Volume GUID

(FE_NETWORK_GUID) or the FESF Shadow Volume GUID (FE_SHADOW_VOLUME_GUID), and must

not be NULL or empty.

RelativePath [in]

A path, relative to the supplied Volume GUID.

FQP [in]

A Fully Qualified (Windows) Path to a file on a local volume. File must not be located on a network

share.

Header [out, retval]

The current file header

Return value

If the function succeeds, S_OK is returned.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

1

If the function fails for any reason, an appropriate error code is returned.

Remarks

The file must be FESF Encrypted and the caller must have SeRestorePrivilege.

Requirements

Software version FESF V1.2.4 (or later)

DLL FESFUtility.DLL

IID IFesfUtil2 (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

2

UpdateHeaderUnsafe and

UpdateHeaderUnsafeFQP functions

Provides a mechanism to update the header of an encrypted file, even if the file is currently in use by another

process.

Syntax

HRESULT

UpdateHeaderUnsafe(

 [in] REFGUID VolumeGuid,

 [in] BSTR Path,

 [in] VARIANT *OldHeader,

 [in] VARIANT *NewHeader

)

HRESULT

UpdateHeaderUnsafeFQP(

 [in] BSTR Fqp,

 [in] VARIANT *OldHeader,

 [in] VARIANT *NewHeader

)

Parameters

VolumeGuid[in]

GUID representing a local volume. This GUID must not be the FESF Network Volume GUID

(FE_NETWORK_GUID) or the FESF Shadow Volume GUID (FE_SHADOW_VOLUME_GUID), and must

not be NULL or empty.

RelativePath [in]

A path, relative to the supplied Volume GUID.

FQP [in]

A Fully Qualified (Windows) Path to a file on a local volume. File must not be located on a network

share.

OldHeader [in]

The current file header.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

3

NewHeader [in]

The new file header.

Return value

If the function succeeds, S_OK is returned.

If the function fails for any reason, an appropriate error code is returned.

Remarks

This function will change the file header of a currently open file. It is an extra-ordinarily dangerous function

to call since the rest of the stack is unaware that the header has changed and so such a change must not

involve a change to the encryption key – otherwise the file will have been hopelessly and irretrievably

corrupted.

After a successful call to this function, the updated header is passed to the Policy DLL callbacks on

subsequent opens of the file.

The call will fail if:

• The new header size is not the same as the old header size.

• The provided old header does not match the current (on disk) header.

• The file is not on a local disk.

• The caller does not have SeRestorePrivilege.

• The file is not FESF Encrypted.

The caller of this API is responsible for protecting a file against multiple, simultaneous header updates. The

results are undefined if simultaneous calls to UpdateHeaderUnsafe/UpdateHeaderUnsafeFQP are made to

a file.

Requirements

Software version FESF V1.2.4 (or later)

DLL FESFUtility.DLL

IID IFesfUtil2 (please use the defintion from the Type Library)

CLSID FesfUtil (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

4

FESFDs Function Reference

The functions in this section are implemented by the FESF Data Storage Service (FesfDs.exe).

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

5

Using Functions in the FesfDs Service

The FesfDs service is an out-of-process COM server. It exports the functions described in this section for use

by Client Solutions in FESF Online State (when FESF is installed and running on the system) or in FESF Offline

State (as long as the FesfDS Service is accessible via COM).

Type Library: \UM_FESF\UMLIB\FESFDS.TLB

CLSID: FesfDs {8a8b65c6-8862-4856-95f9-9f88b2ec785d}

IID: IFesfDs {8ef95237-cec8-4c30-99c0-db43e61bdea8}

Note: Please use the definitions provided in the type library as the GUIDs are subject to change.

Functions exported by the FesfDs Service can be invoked using standard COM mechanisms. One example of

using these mechanisms is illustrated in the following example.

In the Header file:

 #import "..\..\UM_FESF\UMLib\FESFDS.tlb" no_namespace raw_interfaces_only

In the executable function:

// Initialize COM
HRESULT hr = ::CoInitialize(0);

if (FAILED(hr))
{
 return Error(hr);
}

// get data storage object
CComPtr<IFesfDs> spDS;
HRESULT hr = spDS.CoCreateInstance(__uuidof(FesfDs));

if (FAILED(hr))
{
 return Error(hr);
}

// check if file is encrypted

VARIANT_BOOL encrypted;
hr = spDS->IsFileEncrypted(const_cast<GUID *>(&GUID_NULL),
 CComBSTR(file),
 &encrypted);

if (FAILED(hr))
{
 wprintf(L"Failed to determine status\n");
 return;
}

if (encrypted == VARIANT_TRUE) {

 wprintf(L"File is encrypted\n");
} else {

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

6

 wprintf(L"File is not encrypted\n");
}

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

7

IsFileEncrypted function

Determines if a given file is stored in FESF encrypted format.

Syntax

HRESULT

IsFileEncrypted(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [out, retval] VARIANT_BOOL* Encrypted

)

{ ... }

Parameters

Volume [in]

A reference to a GUID that identifies the volume on which the file resides. See Remarks for further

information.

Path [in]

A string containing the path of a file to check. This may be a fully qualified path or a path relative to

the Volume argument. Refer to the Remarks section.

Encrypted [out, retval]

A pointer to a VARIANT_BOOL that will receive the result on success. Set to VARIANT_TRUE if the file

indicated by Path is in FESF encrypted format.

Return value

S_OK on success

E_FAIL if the file cannot be opened for read access, the required privileges are not available to the caller, or

for various other fatal error conditions.

Other standard HRESULT values may be returned indicating the failure of the operation.

Remarks

If Volume is equal to FE_NETWORK_GUID (indicating that Path refers to a file on a network volume), then

Path is interpreted as a fully qualified path, suitable for direct evaluation.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

8

If Volume is equal to FE_SHADOW_VOLUME_GUID (indicating that Path refers to a file on a network volume),

then path is interpreted as either as a fully qualified path, suitable for direct evaluation or as the

concatenation of the shadow device name and path.

If Volume is equal to GUID_NULL (indicating that no GUID is provided) then the path is inspected and treated

as though either FE_SHADOW_VOLUME_GUID or FE_NETWORK_GUID was provided.

Otherwise, Volume represents a local volume and Path is interpreted as relative to that volume.

In most cases, the calling COM client must have read access to the file.

Example

See also

The provided UM_Sample solution contains examples that illustrates the use of this function.

Requirements

Software version FESF V1 (or later)

DLL/Server FesfDs.exe

Supported FESF State FESF Online State or FESF Offline State (as long as FesfDs in

accessible via COM).

IID IFesfDs (please use the defintion from the Type Library)

CLSID FesfDs (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
9

9

GetTrueSize function

Retrieves the total on-disk size of a file stored in FESF encrypted format.

Syntax

HRESULT

GetTrueSize(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [out, retval] __int64* TrueSize

)

{ ... }

Parameters

Volume [in]

A reference to a GUID that identifies the volume on which the file resides. See Remarks for further

information.

Path [in]

A string containing the path of a file to check. This may be a fully qualified path or a path relative to

the Volume argument. Refer to the Remarks section.

TrueSize [out, retval]

A pointer to a 64-bit location that will receive the size, in bytes, of the file on success.

Return value

S_OK on success

Other standard HRESULT values may be returned indicating the failure of the operation.

Remarks

If Volume is equal to FE_SHADOW_VOLUME_GUID (indicating that Path refers to a file on a network volume),

then path is interpreted as either as a fully qualified path, suitable for direct evaluation or as the

concatenation of the shadow device name and path.

If Volume is equal to GUID_NULL (indicating that no GUID is provided) then the path is inspected and treated

as though either FE_SHADOW_VOLUME_GUID or FE_NETWORK_GUID was provided.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
0

Otherwise, Volume represents a local volume and Path is interpreted as relative to that volume.

When FESF encrypts a file, additional data is stored along with that file. This data includes both the Client

Solution's Policy Header, and a small amount of FESF metadata. When file size information is retrieved by

standard means, FESF corrects the file size to represent only the size of the data in the file. Therefore, the file

size ordinarily does not reflect the actual number of bytes a given file occupies on disk.

A Client Solution may use the GetTrueSize function to retrieve the actual number of bytes that a file

occupies on disk, including the Solution's Policy Header and FESF metadata.

The calling COM client must have read access to the file to call this function.

Example

See also

The provided UM_Sample solution contains examples that illustrates the use of this function.

Requirements

Software version FESF V1 (or later)

DLL/Server FesfDs.exe

Supported FESF State FESF Online State or FESF Offline State (as long as FesfDs in

accessible via COM).

Type Library \UM_FESF\UMLIB\FESFDS.TLB

IID IFesfDs (please use the defintion from the Type Library)

CLSID FesfDs (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
1

Encrypt function

This function is reserved to OSR.

Syntax

HRESULT

Encrypt(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [in] BSTR User

)

{ ... }

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
2

Decrypt function

This function is reserved to OSR.

Syntax

HRESULT

Decrypt(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [in] BSTR User

)

{ ... }

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
3

CheckFile function

Checks an FESF encrypted file to determine if it is consistent and valid, and optionally repairs that file

returning it to a previously known correct state.

Syntax

HRESULT

CheckFile(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [in] BSTR User,

 [in] VARIANT_BOOL RepairIfDamaged

)

{ ... }

Parameters

Volume [in]

A reference to a GUID that identifies the volume on which the file resides. See Remarks for further

information.

Path [in]

A string containing the path of a file to check. This may be a fully qualified path or a path relative to

the Volume argument. Refer to the Remarks section.

User [in]

A string value identifying the user requesting the operation.

RepairIfDamaged [in]

If VARIANT_TRUE, FesfDs will attempt to repair the file if it is found to be inconsistent. If

VARIANT_FALSE FesfDs will only report the status of the file to the caller.

Return value

Returns E_FAIL or E_NOTIMPL.

Remarks

This function is not implemented in FESF V1.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
4

Example

See also

Requirements

Software version FESF V1 (or later)

DLL/Server FesfDs.exe

Supported FESF State FESF Online State or FESF Offline State (as long as FesfDs in

accessible via COM).

Type Library \UM_FESF\UMLIB\FESFDS.TLB

IID IFesfDs (please use the defintion from the Type Library)

CLSID FesfDs (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
5

ReadHeader function

Retrieves the header of an FESF Encrypted file.

Syntax

HRESULT

ReadHeader(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [out] ULONG *MaxHeaderLength,

 [out, retval] VARIANT *Header

)

{ ... }

Parameters

Volume [in]

A reference to a GUID that identifies the volume on which the file resides. See Remarks for further

information.

Path [in]

A string containing the path of a file whose header is to be read. This may be a fully qualified path

or a path relative to the Volume argument. Refer to the Remarks section.

MaxHeaderLength [out]

The maximum total length, in bytes, of the Header Data that can be written without having to extend

the file. See Remarks for more information.

Header [out]

A pointer to a VARIANT into which to return, on success, the Client Solution's Policy Header Data.

See the Remarks for more information.

Return value

S_OK on success

Other standard HRESULT values may be returned indicating the failure of the operation.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
6

Remarks

A Client Solution component calls ReadHeader to retrieve its Policy Header Data from an FESF encrypted

file. In case the Solution component wants to subsequently update the Policy Header Data, this method also

returns the maximum size of a new Header Data area that may be written without having to extend the file.

If Volume is equal to FE_SHADOW_VOLUME_GUID (indicating that Path refers to a file on a network volume),

then path is interpreted as either as a fully qualified path, suitable for direct evaluation or as the

concatenation of the shadow device name and path.

If Volume is equal to GUID_NULL (indicating that no GUID is provided) then the path is inspected and treated

as though either FE_SHADOW_VOLUME_GUID or FE_NETWORK_GUID was provided.

Otherwise, Volume represents a local volume and Path is interpreted as relative to that volume.

The Policy DLL’s Header Data is returned to the caller in a CComSafeArray of bytes, described by a COM

(automation) VARIANT structure. The header data in the returned CComSafeArray can be used directly or

copied to a buffer, as shown in the example below.

The calling COM client must have SE_RESTORE_NAME privilege available to call this function.

Example

BYTE *existingHeader{ nullptr };
BYTE *newHeader{ nullptr };
auto headerLength = (ULONG)0;
ULONG newLength;
ULONG maxHeaderLength{ 0 };
VARIANT variantHeader;
CString errorString(L"");

//
// Read the existing Header
//
hr = spDS->ReadHeader(const_cast<GUID *>(&GUID_NULL),
 GetUniversalFilePath(file),
 &maxHeaderLength,
 &variantHeader);

if (!SUCCEEDED(hr))
{
 wprintf(L"%-30ws <E> ReadHeader failed 0x%x\n", findData.cFileName, hr);
 break;
}

//
// We need to convert the variant version of the header into a
// byte array version of the header, which we do via a
// safearray of bytes.
//

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
7

CComSafeArray<BYTE> headerAsSafeArray;

if (nullptr == variantHeader.parray)
{
 wprintf(L"%-30ws <E> ReadHeader returned null header (hr=0x%x)\n",
 findData.cFileName, hr);
 break;
}

headerAsSafeArray.Attach(variantHeader.parray);
headerLength = headerAsSafeArray.GetCount();
existingHeader = new BYTE[headerLength];

//
// Move the data from the safe array back into the header buffer
//
for (ULONG index = 0; index < headerLength; index++)
{
 existingHeader[index] = headerAsSafeArray.GetAt(index);
}

See also

Requirements

Software version FESF V1 (and later)

DLL/Server FesfDs.exe

Supported FESF State FESF Online State or FESF Offline State (as long as FesfDs in

accessible via COM).

Type Library \UM_FESF\UMLIB\FESFDS.TLB

IID IFesfDs (please use the defintion from the Type Library)

CLSID FesfDs (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
8

UpdateHeader function

Updates the header of an FESF Encrypted file.

Syntax

HRESULT

UpdateHeader(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [in] VARIANT * NewHeader

)

{ ... }

Parameters

Volume [in]

A reference to a GUID that identifies the volume on which the file resides. See Remarks for further

information.

Path [in]

A string containing the path of a file to update. This may be a fully qualified path or a path relative

to the Volume argument. Refer to the Remarks section.

NewHeader [in]

A pointer to a VARIANT that describes a CComSafeArray of bytes holding the new header that is to

be substituted for the existing header on the file.

Return value

S_OK on success

The error code E_INVALIDARG is returned if the function is called with a header that is larger than can be

accommodated in the existing file without extension.

Other standard HRESULT values may be returned indicating the failure of the operation.

Remarks

A Client Solution component calls UpdateHeader to replace the existing Policy Header Data in an FESF

encrypted file with new Policy Header Data. The old Policy Header Data is discarded.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

0
9

If Volume is equal to FE_SHADOW_VOLUME_GUID (indicating that Path refers to a file on a network volume),

then path is interpreted as either as a fully qualified path, suitable for direct evaluation or as the

concatenation of the shadow device name and path.

If Volume is equal to GUID_NULL (indicating that no GUID is provided) then the path is inspected and treated

as though either FE_SHADOW_VOLUME_GUID or FE_NETWORK_GUID was provided.

Otherwise, Volume represents a local volume and Path is interpreted as relative to that volume.

The new data may must be less than or equal to the number of bytes returned in the MaxHeaderLength

parameter of the FesfDS->ReadHeader method. If the Client Solution component needs to write a header

that’s larger than MaxHeaderLength bytes, it must use the FesfDS->UpdateHeaderWithExtension method.

UpdateHeader is optimized to allow a Client Solution to update an existing header within specific size

constraints, and with as little overhead as possible. If the size of the Header Data to be written is less than

the maximum Header Data length returned in the MaxHeaderLength parameter of the FesfDS->ReadHeader

function, the Client Solution component can call FesfDS->UpdateHeader. If the Header Data to be written

is greater than MaxHeaderLength bytes, the FesfDS->UpdateHeaderWithExtension function must be used.

Solutions should note that, depending on the size of the new Header Data to be written, UpdateHeader

may not inherently be transactionally safe. Thus, the file being updated could become corrupted if an

unrecoverable error occurs during the header update process. If absolute safety is required, the Client

Solution component should make a backup copy of the file being updated, call UpdateHeader, and when

the update succeeds delete the backup copy.

The calling COM client must have SE_RESTORE_NAME privilege available to call this function.

Example

//
// Now write the header back to the safe array so that we can
// write it out to the file
//
for (auto index = (ULONG)0; index < newLength; index++)
{

 headerAsSafeArray.SetAt(index, newHeader[index]);
}

if (action == HeaderUpdateSeqNumber || action == HeaderUpdateSizeRandom ||
 action == HeaderUpdateSizeIncreasing)
{
 //
 // If the header is larger than the maximum allowed size,
 // we have to call a different function to do it
 //
 if (newLength <= maxHeaderLength)
 {

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
0

 hr = spDS->UpdateHeader(const_cast<GUID *>(&GUID_NULL),
 GetUniversalFilePath(file),
 &variantHeader);
 }

 else
 {
 hr = spDS->UpdateHeaderWithExtension(
 const_cast<GUID *>(&GUID_NULL),
 GetUniversalFilePath(file),
 &variantHeader);
 }

 if (!SUCCEEDED(hr))
 {
 wprintf(L"%-30ws <E> UpdateHeader failed (hr=0x%x)\n", findData.cFileName, hr);
 break;
 }

The above snippet comes from the SampUpdateHeader example that’s provided as part of the UM_SAMPLE Solution.

Refer to that example for more details.

See also

FesfDS->UpdateHeaderWithExtension.

Requirements

Software version FESF V1 (and later)

DLL/Server FesfDs.exe

Supported FESF State FESF Online State or FESF Offline State (as long as FesfDs in

accessible via COM).

Type Library \UM_FESF\UMLIB\FESFDS.TLB

IID IFesfDs (please use the defintion from the Type Library)

CLSID FesfDs (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
1

UpdateHeaderWithExtension function

Updates the header of an FESF Encrypted file, extending the file to accommodate a larger Policy Header Data

size.

Syntax

HRESULT

UpdateHeaderWithExtension(

 [in] REFGUID Volume,

 [in] BSTR Path,

 [in] VARIANT * NewHeader

)

{ ... }

Parameters

Volume [in]

A reference to a GUID that identifies the volume on which the file resides. See Remarks for further

information.

Path [in]

A string containing the path of a file to update. This may be a fully qualified path or a path relative

to the Volume argument. Refer to the Remarks section.

NewHeader [in]

A pointer to a VARIANT that describes a CComSafeArray of bytes holding the new header that is to

be substituted for the existing header on the file.

Return value

S_OK on success

Other standard HRESULT values may be returned indicating the failure of the operation.

Remarks

A Client Solution component calls UpdateHeaderWithExtension to replace the existing Policy Header Data

in an FESF encrypted file with new Policy Header Data, extending the file to accommodate the new Header

Data. The old Policy Header Data is discarded.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
2

If Volume is equal to FE_SHADOW_VOLUME_GUID (indicating that Path refers to a file on a network volume),

then path is interpreted as either as a fully qualified path, suitable for direct evaluation or as the

concatenation of the shadow device name and path.

If Volume is equal to GUID_NULL (indicating that no GUID is provided) Then the path is inspected and

treated as though either FE_SHADOW_VOLUME_GUID or FE_NETWORK_GUID was provided.

. Otherwise, Volume represents a local volume and Path is interpreted as relative to that volume.

If the size of the Header Data to be written is less than or equal to the maximum Header Data length

returned in the MaxHeaderLength parameter of the FesfDS->ReadHeader function, it is significantly less

overhead for the Client Solution component to call FesfDS->UpdateHeader than to call FesfDS-

>UpdateHeaderWithExtension.

The new Header Data can actually be any size. While the name of this function implies that the new Header

Data will be larger than the existing Header Data (with the file being extended accordingly), the new Header

Data may actually be smaller than the existing Header Data. In this case, the file will be shrunk accordingly.

If the Client Solution component needs to write a header that’s larger than MaxHeaderLength bytes, it must

use the FesfDS->UpdateHeaderWithExtension method.

Solutions should note that, while UpdateHeaderWithExtension makes a reasonable attempt to ensure

correctness, the function is not inherently be transactionally safe. Thus, the file being updated could become

corrupted if an unrecoverable error occurs during the header update or file extension process. If absolute

safety is required, the Client Solution component should make a backup copy of the file being updated, call

UpdateHeaderWithExtension, and when the update succeeds delete the backup copy.

The calling COM client must have SE_RESTORE_NAME, SE_SECURITY_NAME, and

SE_TAKE_OWNERSHIP_NAME privileges available.

Example

//
// Now write the header back to the safe array so that we can
// write it out to the file
//
for (auto index = (ULONG)0; index < newLength; index++)
{

 headerAsSafeArray.SetAt(index, newHeader[index]);
}

if (action == HeaderUpdateSeqNumber || action == HeaderUpdateSizeRandom ||
 action == HeaderUpdateSizeIncreasing)
{
 //
 // If the header is larger than the maximum allowed size,
 // we have to call a different function to do it

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
3

 //
 if (newLength <= maxHeaderLength)
 {
 hr = spDS->UpdateHeader(const_cast<GUID *>(&GUID_NULL),
 GetUniversalFilePath(file),
 &variantHeader);
 }

 else
 {
 hr = spDS->UpdateHeaderWithExtension(
 const_cast<GUID *>(&GUID_NULL),
 GetUniversalFilePath(file),
 &variantHeader);
 }

 if (!SUCCEEDED(hr))
 {
 wprintf(L"%-30ws <E> UpdateHeader failed (hr=0x%x)\n", findData.cFileName, hr);
 break;
 }

The above snippet comes from the SampUpdateHeader example that’s provided as part of the UM_SAMPLE Solution.

Refer to that example for more details.

See also

FesfDS->UpdateHeader

Requirements

Software version FESF V1 (and later)

DLL/Server FesfDs.exe

Supported FESF State FESF Online State or FESF Offline State (as long as FesfDs in

accessible via COM).

Type Library \UM_FESF\UMLIB\FESFDS.TLB

IID IFesfDs (please use the defintion from the Type Library)

CLSID FesfDs (please use the definition from the Type Library)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
4

FESFSa Function Reference

The functions in this section are implemented by the FESF Stand-Alone library (FesfSa.lib).

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
5

About the FESFSa Functions
A key point to keep in mind about the FesfSa functions is that they may be used only on systems where FESF

is not installed (or where it can be unambiguously guaranteed that none of the FESF kernel-mode or user-

mode components are running). This is referred to as FESF Not Installed state. Using the FesfSa functions on

systems where the FESF is active will result in undefined behaviors, including file corruption.

Given the design patterns implemented by FesfSaEncrypt and FesfSaDecrypt, your stand-alone application’s

code will be responsible for performing the actual encryption and decryption operations on file data. This is

in contrast to the practice when FESF is installed, in which FESF performs all encryption and decryption

operations.

Because you will be responsible for implementing the data encryption and decryption functions, it should go

without saying that, in order for newly encrypted files to be recognized and accessible by FESF, you must

perform encryption and overall file operations in a way that is fully compatible with FESF. FESF uses the

Microsoft CNG implementation for its encryption operations. Ensuring that your stand-alone application

creates compatible FESF encrypted files is the responsibility of your application.

For algorithms requiring a fixed block size, we use a value of 256 bytes. This choice is arbitrary. Normally,

algorithms that provide a CBC mode also include a non-secret value known as the initialization vector. This

prevents identical blocks from appearing to be identical in the encrypted file content.

When calling CNG encryption methods that require an initialization vector (IV), FESF generates this from the

key material using a technique adapted from the disk drive field and known as the Encrypted Salt-Sector

Initialization Vector (ESSIV). In general:

IV(O)=Cs(O)

Where O is the offset, C is a cryptographic function and s is a cryptographic hash of the password. However,

our specific implementation varies slightly. Specifically, we limit the value of O to be less than 263 bits (8EB)

in keeping with the largest possible size in the Windows environment. Rather than sign extend the value, we

shift the value by 64 bits. Thus, we implement:

IV(O)=Cs(O*264)

We derive s (the encryption key we use) by computing the SHA-256 checksum of the file key material. This

provides us with the “salt” to permute the underlying encryption algorithm, as necessary.

Our choice for C (the cryptographic function) is AES-256 in Electronic Code Book (ECB) mode.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
6

FesfSaDecrypt function

Decrypts a valid FESF encrypted file using a caller-provided callback.

Syntax

bool

FesfSaDecrypt(

 In const wchar_t *Path,

 In FE_DECRYPT_CALLBACK_ROUTINE CallbackRoutine

 In void *CallbackContext,

)

{ ... }

Parameters

Path [in]

A string containing the path of a file to decrypt. Refer to the Remarks section.

CallbackRoutine [in]

A pointer to a caller supplied DecryptCallback routine. Refer to the Remarks section.

CallbackContext [in]

A pointer to a caller-provided context structure passed to every invocation of the provided

WriteCallback.

Return value

Returns true if the function successfully processes all the data, false otherwise.

For Windows platforms, a specific status code for this function is reported with GetLastError().

For Linux platforms, the errno variable is set.

Remarks

This function provides FESF with a path describing a file to be decrypted. FESF calls the application provided

Callback function with data blocks from the file for the callback to decrypt. FESF does not call the Callback

function with any metadata (FESF metadata or the Solution Header Data).

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
7

The file described by Path must be a valid FESF encrypted file. If it is not, an error is returned. If FESF cannot

open the file described by Path for exclusive access, an error is returned.

The callback is called synchronously with respect to this function. That is, the application’s call to Decrypt

returns when all data has been supplied by FESF to the callback.

Example

See also

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library FesfSa.lib

Linux Library FESFsa.a

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
8

DecryptCallback routine

Receives a block of data read from a FESF encrypted file for decryption.

Syntax

FE_DECRYPT_CALLBACK_FUNCTION DecryptCallback;

bool

DecryptCallback(

 In void *CallbackContext,

 In void *SolutionHeader,

 In uint32_t SolutionHeaderSize,

 In uint64_t FinalSize,

 In void *EncryptedData,

 In uint32_t EncryptedDataSize

)

{ ... }

Parameters

CallbackContext [in]

A buffer containing context data provided to the Decrypt function.

SolutionHeader [in]

A buffer that contains the Solution Header retrieved by FESF from the encrypted file.

SolutionHeaderSize [in]

The size of the buffer pointed to by SolutionHeader, in bytes.

FinalSize [in]

The final size of the decrypted output for the file. Does not change across a single invocation of the

Decrypt function that calls this callback.

EncryptedData [in]

A buffer containing the next block of encrypted data.

EncryptedDataSize [in]

The length of the data to be decrypted and written. Always provided as a multiple of

CipherBlockSize, even if the decrypted contents may be of a different size. See Remarks.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

1
9

Return value

Returns true if the function successfully processes all the data, false otherwise.

For Windows platforms, a specific status code for this function is reported with SetLastError().

For Linux platforms, the errno variable should be set to report a specific error code.

Remarks

This callback routine is called to provide encrypted data to an application to allow the application to produce

a data stream that contains unencrypted data.

FESF reads encrypted data blocks from the file and provides them sequentially to the application via this

callback. The callback decrypts the data provided.

The last block in a file may contain data padding as required by some encryption algorithms. Care should be

taken to not write more data to the output stream than is specified by the FinalSize parameter.

If the encryption algorithm requires an Initialization Vector (IV), the application is required to use the same

algorithm that FESF uses to generate a unique IV per cipher block. For chained ciphers such as CBC, the

encryption algorithm is likewise required to implement the same blocking scheme used by FESF. See the

section About the FESFSa Functions in this document for the description of these issues.

Example

See also

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library FesfSa.lib

Linux Library FESFsa.a

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
0

FesfSaEncrypt function

Enables an application to create an FESF encrypted data stream (a file, a series of network messages, etc)

from a plaintext file.

Syntax

bool

FesfSaEncrypt(

 In const wchar_t *Path,

 In FE_ENCRYPT_WRITER CallbackRoutine

 In void *CallbackContext,

 In void *SolutionHeader,

 In uint32_t SolutionHeaderSize,

 In uint32_t CipherBlockSize,

)

{ ... }

Parameters

Path [in]

A string containing the path of a file to encrypt. Refer to the Remarks section.

CallbackRoutine [in]

A pointer to a caller supplied EncryptCallback routine. Encrypt calls this function for each segment of

data in the FESF encrypted data stream.

CallbackContext [in]

A pointer to a caller-provided context structure passed to every invocation of the provided callback.

SolutionHeader [in]

A buffer that contains the Solution Header that FESF will include in its metadata in the process of

encrypting the file.

SolutionHeaderSize [in]

The size of the buffer pointed to by SolutionHeader, in bytes.

CipherBlockSize [in]

The block size of the encryption algorithm used by the Callback function.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
1

Return value

Returns true if the function successfully processes all the data, false otherwise.

For Windows platforms, a specific status code for this function is reported with GetLastError().

For Linux platforms, the errno variable is set.

Remarks

This function provides the caller-supplied EncryptCallback with a stream of sequential data that will produce

a valid FESF encrypted file. The Callback will be called multiple times until all file data has been supplied.

See the description of EncryptCallback for more information.

If FESF cannot open the file described by Path for exclusive access, an error is returned.

The provided SolutionHeader is identical to the PolHeaderData buffer returned by the Solution’s Policy DLL

from FESF’s PolGetKeyNewFile callback.

The callback is called synchronously with respect to this function. That is, the application’s call to Encrypt

returns when all data has been supplied by FESF to the callback.

Example

See also

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library FesfSa.lib

Linux Library FESFsa.a

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
2

EncryptCallback routine

Processes a block of data generated by the Encrypt call to encrypt and store a sequential output stream.

Syntax

FE_ENCRYPT_CALLBACK_ROUTINE EncryptCallback;

bool

EncryptCallback(

 In void *CallbackContext,

 In uint64_t FinalSize,

 In void *StreamData,

 In uint32_t StreamDataLength,

 In bool EncryptBeforeWriting

)

{ ... }

Parameters

CallbackContext [in]

A buffer containing context data provided to the Encrypt function.

FinalSize [in]

The final size of the encrypted data stream. The resultant output must be exactly this size to be

successfully recognized by FESF. See Remarks for more details.

StreamData [in]

A buffer containing the unencrypted data to be written. If WriteEncrypted is true, the application

receiving the callback is responsible for encrypting the contents of the data buffer.

StreamDataLength [in]

The length of the data to be written. If WriteEncrypted is true, this will be a multiple of the

CipherBlockSize argument passed to Encrypt.

EncryptBeforeWriting [in]

If true, the contents of the Data buffer must be encrypted before storing the output. If false, Data

must be written without modification.

Return value

Returns true if the function successfully processes all the data, false otherwise.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
3

For Windows platforms, a specific status code for this function can be reported with SetLastError().

For Linux platforms, the errno variable should be set to report a specific error code.

Remarks

This callback routine is called to provide data to an application to allow the application to produce a data

stream that can be interpreted as a valid FESF encrypted file.

If EncryptBeforeWriting is TRUE, the application receiving the callback is responsible for encrypting the

supplied Data using key material that can be derived from the SolutionHeader it previously passed to the

Encrypt function. If EncryptBeforeWriting is TRUE and the data supplied in Data is not an integer multiple of

the CipherBlockSize the application receiving the callback is responsible for padding the data appopriately

before performing the encryption operation.

If EncryptBeforeWriting is FALSE, the data supplied in the Data buffer is FESF metadata that must be stored

exactly as supplied from the callback, without any change. These data blocks may not be padded or

rounded in size.

Each block of callback data provided to this routine must appear contiguously and the same order in the

output stream as it is provided to the callback.

If the encryption algorithm requires an Initialization Vector (IV), the application is required to use the same

algorithm that FESF uses to generate a unique IV per cipher block. For chained ciphers such as CBC, the

encryption algorithm is likewise required to implement the same blocking scheme used by FESF. See the

section About the FESFSa Functions in this document for the description of these issues.

The FinalSize argument defines the ultimate size of the stream, which may be slightly larger than the number

of data bytes written to the stream. This argument will be the same each time Callback is called for a given

call to Encrypt.

Failure to write the data in the correct order, or failure to make sure that the file is exactly FinalSize bytes

long will result in an inconsistent or invalid FESF encrypted file.

Example

See also

Requirements

Software version FESF Version 1 (added)

Supported FESF State FESF Not Installed ONLY

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
4

Windows Library FesfSa.lib

Linux Library FESFsa.a

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
5

FesfSaIsFileEncrypted function

Determines if a given file is stored in FESF encrypted format.

Syntax

bool

FesfSaIsFileEncrypted(

 _In_const wchar_t *Path,

 Out bool * Encrypted

)

{ ... }

Parameters

Path [in]

A string containing the path of a file to check. This must be a fully qualified path.

Encrypted [out, retval]

A pointer to a bool that will receive the result on success. Set to true if the file indicated by Path is in

FESF encrypted format.

Return value

Returns true if the indicated file is recognized as being encrypted by FESF, false otherwise.

For Windows platforms, a specific status code for this function is reported with SetLastError().

For Linux platforms, the errno variable should be set to report a specific error code.

Remarks

Path is interpreted as a fully qualified path, suitable for direct evaluation.

Example

See also

Requirements

Software version FESF Version 1 (added)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
6

Supported FESF State FESF Not Installed ONLY

Windows Library FesfSa.lib

Linux Library FESFsa.a

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
7

FesfSaReadHeader function

Reads the Application Header.

Syntax

bool

FesfSaReadHeader(_In_ const wchar_t *Path,

 _Inout_opt_bytecount_(SolutionHeaderSize) void * SolutionHeader,

 In uint32_t SolutionHeaderSize,

 Out uint32_t *BytesRead

);)

{ ... }

Parameters

Path [in]

A string containing the path of a file whose solution header should be read.

SolutionHeader [out, retval]

A caller allocated buffer to receive the solution header.

SolutionHeaderSize [in]

The size of the caller allocated buffer in bytes.

BytesRead [out]

A pointer to an integer which will receive the size of the solution header.

Return value

Returns true if the header was successfully read, false otherwise.

For Windows platforms, a specific status code for this function is reported with SetLastError().

For Linux platforms, the errno variable should be set to report a specific error code.

Remarks

Path is interpreted as a fully qualified path, suitable for direct evaluation.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
8

If the supplied buffer is too small then false is returned, but BytesRead is set to the size of the solution

header in the file. Additionally in this situation, for Windows platforms GetLastError is set to be

ERROR_BUFFER_OVERFLOW, and for non-Windows platforms errno is set to be –E2BIG.

In all other error cases BytesRead is set to be 0XFFFFFF.

Requirements

Software version FESF Version 1.1 (added)

Supported FESF State FESF Not Installed ONLY

Windows Library FesfSa.lib

Linux Library FESFsa.a

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

2
9

FesfSaWriteHeader function

Writes the Application Header.

Syntax

bool

FesfSaWriteHeader(_In_ const wchar_t *Path,

 In void *SolutionHeader,

 In uint32_t SolutionHeaderSize)

{ ... }

Parameters

Path [in]

A string containing the path of a file whose solution header should be written.

SolutionHeader [in]

A buffer containing the header

SolutionHeaderSize [in]

The size of the buffer in bytes.

Return value

Returns true if the header was successfully written, false otherwise.

For Windows platforms, a specific status code for this function is reported with SetLastError().

For Linux platforms, the errno variable should be set to report a specific error code.

Remarks

Path is interpreted as a fully qualified path, suitable for direct evaluation.

If the new Solution Header is larger than the current one and there is no room to accommodate it in the file

then this call fails.

Requirements

Software version FESF Version 1.1 (added)

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
0

Supported FESF State FESF Not Installed ONLY

Windows Library FesfSa.lib

Linux Library FESFsa.a

FESF Policy Data Structures

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
1

FE_POLICY_CONFIG structure

The FE_POLICY_CONFIG structure specifies the selected configuration options and callbacks for the Policy

DLL.

Syntax

typedef struct _FE_POLICY_CONFIG {

 DWORD VersionMajor;
 DWORD VersionMinor;
 DWORD Length;

 struct {
 bool ApproveRename;
 bool ApproveCreateLink;
 bool ApproveCorruptFileAccess;
 bool RawDirSize;
 } OfflineBehavior;

 struct {
 bool Enable;
 } AccessCache;

 POL_GET_POLICY_NEW_FILE *PolGetPolicyNewFile;
 POL_GET_KEY_NEW_FILE *PolGetKeyNewFile;
 POL_GET_POLICY_EXISTING_FILE *PolGetPolicyExistingFile;
 POL_GET_KEY_FROM_HEADER *PolGetKeyFromHeader;

 POL_APPROVE_RENAME *PolApproveRename;
 POL_APPROVE_CREATE_LINK *PolApproveCreateLink;
 POL_REPORT_FILE_INCONSISTENT *PolReportFileInconsistent;
 POL_REPORT_LAST_HANDLE_CLOSED *PolReportLastHandleClosed;
 POL_FREE_HEADER *PolFreeHeader;
 POL_FREE_KEY *PolFreeKey;

 POL_UNINIT *PolUnInit;

 DWORD AlgorithmsCount;
 FE_POLICY_ALGORITHM *Algorithms[1];

} FE_POLICY_CONFIG;

Members

VersionMajor

The major version of the FESF Policy API supported by the Policy DLL. This must be

FE_POLICY_VERSION_MAJOR.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
2

VersionMinor

The minor version of the FESF Policy API supported by the Policy DLL. This must be

FE_POLICY_VERSION_MINOR.

Length

The length in bytes of the FE_POLICY_CONFIG structure.

OfflineBehavior

The fields in this structure set the default values that FESF kernel mode components should use when

the FESF Policy Service is not running (that is, FESF is running on Offline State). This state can occur

(a) after the kernel mode components have started and before FesfPolicy has started, (b) FesfPolicy

fails or/or is being restarted, or (c) during system shutdown, after FesfPolicy has terminated but

before the system has completed shutdown processing.

The behaviors specified in this section are saved in the Registry, and used by FESF during subsequent

reboot operations.

ApproveRename

If set to true rename operations will be allowed if the FESF Policy Service is not running.

ApproveCreateLink

If set to true create hard link operations will be allowed if the FESF Policy Service is not

running.

ApproveCorruptFileAccess

If set to true, access to files that are in FESF format but that are "inconsistent" will be allowed

when the FESF Policy Service is not running. Files that are "inconsistent" are those which

FESF identifies as have an internal structure issue. See the description of

PolReportFileInconsistent for more details.

RawDirSize

If set to true, the file sizes shown by directory enumeration will reflect what is consumed on

disk (allowing for the Solution Header). The default is to show size of the data in the file. See

PolGetPolicyDirectoryListing for how to control this behavior while the service is operating.

AccessCache

Enable

Set to true to enable FESF Policy Caching. Otherwise, set to false.

PolGetPolicyNewFile

A pointer to the Client Solution Policy DLL's PolGetPolicyNewFile callback function.

PolGetKeyNewFile

A pointer to the Client Solution Policy DLL's PolGetKeyNewFile callback function.

PolGetPolicyExistingFile

A pointer to the Client Solution Policy DLL's PolGetPolicyExistingFile callback function.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
3

PolGetKeyFromHeader

A pointer to the Client Solution Policy DLL's PolGetKeyFromHeader callback function.

PolApproveRename

A pointer to the Client Solution Policy DLL's PolApproveRename callback function.

PolApproveCreateLink

A pointer to the Client Solution Policy DLL's PolApproveCreateLink callback function.

PolReportFileInconsistent

A pointer to the Client Solution Policy DLL's PolReportFileInconsistent callback function.

PolReportLastHandleClosed

A pointer to the Client Solution Policy DLL's PolReportLastHandleClosed callback function.

PolFreeHeader

A pointer to the Client Solution Policy DLL's PolFreeHeader callback function.

PolFreeKey

A pointer to the Client Solution Policy DLL's PolFreeKey callback function.

PolUnInit

A pointer to the Client Solution Policy DLL's PolUnInit callback function.

AlgorithmsCount

A count of entries in the vector at the Algorithms member of this structure.

Algorithms

Pointer to a vector of FE_POLICY_ALGORITHM structures, each of which describes an encryption

algorithm that the Policy DLL will use.

Remarks

See Also

Requirements

Software version FESF V1 (or later)

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
4

FE_POLICY_PATH_INFORMATION structure

The FE_POLICY_PATH_INFORMATION structure specifies the path name for a file being accessed by FESF.

Syntax

typedef struct _FE_POLICY_PATH_INFORMATION {
 LPCWSTR RelativePath;
 DWORD PathFlags;
 UUID VolumeGuid;
 Union {

 LPCWSTR ServerAndShare;
 LPCWSTR ShadowVolumeName;
 };

} FE_POLICY_PATH_INFORMATION;

Members

RelativePath

A path name (including file name), starting with backslash. For local volumes, the path is relative to

the volume GUID. For network volumes, the path is relative to the share.

PathFlags

A bitmask containing values describing the location of the path being provided:

FE_POLICY_PATH_NAME_NOT_NORMALIZED

0x001

The path information provided has NOT been

normalized in format. This is a rare occurrence

and relates only to some specific network

operations.

VolumeGuid

For network files, this field contains the GUID FE_NETWORK_GUID.

For shadow volumes, this field contains the GUID FE_SHADOW_VOLUME_GUID.

For local (that is, non-network) volumes, this field contains the GUID representing the local volume

on which the file resides. The drive letter that this GUID represents can be translated and combined

with the contents of the RelativePath field using the FESF Utility Library function

GetFullyQualifiedLocalPath. The result will be a traditional Windows fully qualified path name.

ServerAndShare

The name of the server and share. The UNC file name can be derived by appending the

RelativePath to the ServerAndShare.

Only valid if VolumeGuid is FE_NETWORK_GUID.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
5

ShadowVolumeName

The “device name” of the shadow volume. A UNC file name can be derived by appending

RelativePath to the ShadowVolumeName and prepending the whole with \\?\GlobalRoot

Only valid if VolumeGuid is FE_SHADOW_VOLUME_GUID.

Remarks

See Also

Requirements

Software version FESF V1 (or later)

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
6

FE_POLICY_ALGORITHM_PROPERTY

structure

The FE_POLICY_ALGORITHM_PROPERTY structure specifies an encryption algorithm property to be passed by

FESF to CNG.

Syntax

typedef struct _FE_POLICY_ALGORITHM_PROPERTY {
 LPCWSTR CNGPropertyIdentifier;
 PVOID CNGPropertyValue;
 DWORD CNGPropertyValueLength;
} FE_POLICY_ALGORITHM_PROPERTY;

Members

CNGPropertyIdentifier

A pointer to a constant null-terminated wide-character string that contains the name of a property.

Strings containing standard cryptographic primitive property identifiers defined by CNG (such as

BCRYPT_CHAINING_MODE, BCRYPT_INITIALIZATION_VECTOR, etc.) are defined in the standard

Windows header file bcrypt.h. The string provided here by the Policy DLL will be provided by FESF

to CNG as the pszProperty argument on a call to BCryptSetProperty. See the MSDN documentation

for that function for more information.

CNGPropertyValue

A pointer to an untyped buffer containing the value for the property. The

CNGPropertyValueLength member contains the length of this buffer. This buffer is provided by

FESF as input to CNG as the pbInput argument on a call to BCryptSetProperty.

CNGPropertyValueLength

The length of the buffer pointed to by CNGPropertyValue.

Remarks

See Also

Requirements

Software version FESF V1 (or later)

Header PolDllApi.h

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
7

FE_POLICY_ALGORITHM structure

The FE_POLICY_ALGORITHM structure specifies the encryption algorithm and associated information. This

information is used by FESF to call CNG.

Syntax

typedef struct _FE_POLICY_ALGORITHM {
 LPCWSTR PolUniqueAlgorithmId;
 LPCWSTR CNGAlgorithmIdentifier;
 LPCWSTR CNGAlgorithmImplementation;
 DWORD PropertiesCount;
 FE_POLICY_ALGORITHM_PROPERTY Properties[1];
} FE_POLICY_ALGORITHM;

Members

PolUniqueAlgorithmId

A pointer to a Policy DLL defined null-terminated constant wide character string, that will be used to

identify this particular algorithm and specified properties. The Policy DLL provides this string as an

output from its PolGetKeyNewFile and PolGetKeyFromHeader callback functions.

CNGAlgorithmIdentifier

A pointer to a null-terminated, constant, wide character string that will be used by FESF to identify

the requested cryptographic algorithm to CNG. Strings for standard CNG algorithms (such as

BCRYPT_AES_ALGORITHM, BCRYPT_3DES_ALGORITHM, etc.) are defined in the standard Windows

header file bcrypt.h. The string provided here by the Policy DLL will be provided to CNG as the

pszAlgId argument when FESF calls BCryptOpenAlgorithmProvider. See the MSDN documentation

for that function for more information.

CNGAlgorithmImplementation

A pointer to a null-terminated, constant, wide character string that identifies the specific

cryptographic algorithm provider to load. This parameter is optional and is typically NULL. FESF

provides this value as the pszImplementation argument when it calls

BCryptOpenAlgorithmProvider. See the MSDN documentation for that function for more

information.

PropertiesCount

A count of the number of properties provided in the Properties member of this structure.

Properties

A vector of FE_POLICY_ALGORITHM_PROPERTY structures, each of which defines a specific

algorithm property.

OSR File Encryption Solution Framework

Solution Developer's Guide V1.5

P
ag

e
1

3
8

Remarks

See Also

Requirements

Software version FESF V1 (and later)

Header PolDllApi.h

