
Windows Internals and Software Driver Development Page 1
Copyright (c) 2017 OSR Open Systems Resources, Inc.

Windows® Internals and Software Driver Development

Overview

This seminar is designed for software engineers and architects who need to understand the details of

the major Windows architectural components, as well as how to create software only kernel-mode

drivers that serve as "extensions" to the Windows operating system. The seminar includes a review of

basic Windows architecture, and covers the basics of building and debugging kernel-mode drivers for

Windows. It then discusses the details of driver structure, including the I/O and PnP subsystems, device

discovery, enumeration, and interrupt processing. Other extension mechanisms, such as Object

Manager, Process Manager, and Registry callbacks are discussed. The seminar also includes in-depth

discussions of the Windows Kernel, process and thread instantiation, and the Memory Manager.

During lab sessions, participants create and modify software-only drivers to perform various kernel-

mode tasks. Note that this seminar focuses on the development of drivers that service as Windows

"operating system extensions" but do not service any hardware. Thus, while the basic concepts of

drivers for devices are discussed, the lab sessions focus strictly on the development of software (i.e.

pseudo) drivers which typically use "legacy" or "NT V4" style interfaces (as opposed to PnP).

Seminar Formats

This seminar is available as a 3 day lecture or a 5 day lab session. Either version can be customized with

additional or different topics for presentation at your location. Please contact an OSR Seminar

Coordinator for details on arranging an on-site seminar.

Target Audience

Security researchers, government contractors, engineers involved in security and threat

analysis/modeling, who need a solid understanding of key Windows internals and data structures, and

the options available to monitor and extend the actions of the Windows operating system. This seminar

is also appropriate for engineers actively involved in the areas of intelligence and information warfare or

cyberwarfare.

Prerequisites

This is not a seminar for beginners without knowledge or experience in either operating systems or

firmware. Rather, it is an intense, practical, architectural study of specific parts of the Windows O/S,

interspersed with practical exercises.

Students attending this seminar will need a good understanding of general O/S concepts and will be well

served by starting a basic understanding of Windows O/S architectural concepts. Because it is a hands-

on seminar, students need a working knowledge of the C programming language, as well as the basic

ability to use a Windows system.

Windows Internals and Software Driver Development Page 2
Copyright (c) 2017 OSR Open Systems Resources, Inc.

Hardware Requirement: Students are expected to bring their own laptop with available USB 2.0 ports

running Windows 7 or later. We recommend a system with at least 4GB of memory and 60GB of free

disk space.

In addition to the base Windows installation, students are expected to have the following software

installed on their systems:

• Microsoft Visual Studio Professional 2013 – Free 90-day trial at

http://www.visualstudio.com/en-us/downloads. There are many versions of Visual Studio available,

please be sure to install the Visual Studio Professional 2013 version only. Accept all defaults during

installation.

• Windows 8.1 Update Driver Kit (WDK) – Free download at http://msdn.microsoft.com/en-

us/windows/hardware/hh852365.aspx. The WDK is a plugin to Visual Studio Professional 2013 and

therefore must be installed after Visual Studio Professional 2013. Accept all defaults during installation.

• VMware Player 6.0 (or later) – Free download at http://www.vmware.com/products/player/.

This VMware installation will host a Windows 8.1 x64 virtual machine provided by OSR. A licensed or

trial version of VMware Workstation may be used in place of the free VMware Player.

If it is impossible for you to provide a suitable laptop, or you have ANY questions regarding the required

configuration, please contact our seminar team: seminars at osr.com.

Seminar Outline

1. Windows Operating System Architecture Overview
A brief review of the general architecture of the Windows operating system.

2. Kernel Mode and Key Structures
In this module, we discuss fundamentals of Kernel Mode in Windows, including coverage of key
object types (Dispatcher, Control, Executive) and data structures (KPCR, KTHREAD, EPROCESS) that
Windows uses.

3. Device Stacks – The Windows I/O Subsystem

A discussion of how the PnP Manager works with drivers to build stacks of devices through the
enumeration process. The role of Function Drivers, Bus Drivers, and Filter Drivers is discussed. PDOs,
FDOs, and Filter Device Objects are defined. The relationship of the PnP process to the process of
loading "legacy" style drivers is discussed.

4. Installing Legacy Drivers on Windows
In this section we discuss how to create installation control files for "legacy" style, software-only
drivers. Also included is a brief discussion of PnP (WDM) driver installation using INF files.

http://www.visualstudio.com/en-us/downloads
http://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx
http://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx
http://www.vmware.com/products/player/

Windows Internals and Software Driver Development Page 3
Copyright (c) 2017 OSR Open Systems Resources, Inc.

5. Building and Debugging

This section describes how WDM drivers are built using the WDK build environment as well as the
basics of how to setup and use the Windows kernel mode debugger, WinDbg.

Lab: Setting Up the Debugger
 Building Drivers

6. Interrupt Request Levels and Deferred Procedure Calls
Windows synchronizes kernel mode activity by using a set of Interrupt Request Levels (IRQLs). This
section covers how IRQLs are used to achieve synchronization within the OS. Also the processing
that occurs at these IRQLs - including Deferred Procedure Calls (DPCs) and dispatching are discussed.

7. Passing Requests to Other Drivers
IRPs, I/O Stack Locations, and how requests are sent from driver to driver using IoCallDriver are all
discussed. Synchronous and asynchronous IRP completion. A brief discussion of completion routines
is also included.

8. I/O Function Codes and Buffer Methods

A specific discussion of I/O function codes (major and minor), as well as defining custom Device
Control requests (IOCTLs). A detailed discussion of the way that Windows passes buffers from user-
mode applications to kernel-mode, including the security implications of each method.

9. DriverEntry -- Legacy vs. PnP

This section describes how software only drivers are initialized, and includes a walk-through and
discussion of the actions taken in a typical DriverEntry function. The discussion is rounded-out with a
description of the initialization functions used by PnP drivers (Add Device and Start Device).

10. Dispatching and Completing Requests
This module describes Dispatch Routines including I/O request validation, as well as the basics of
request queuing and completion.

11. Serialization: Wait Locks and Spin Locks
A discussion of the various mechanisms used in Windows kernel-mode programming to perform
synchronization and serialization. The different types of spin locks, mutexes, and other locks are
discussed, along with guidelines for when each might be appropriate for use.

Lab: Handling DriverEntry and Dispatching Requests
 Queuing, Buffering, Async I/O
 Driver Communication

Windows Internals and Software Driver Development Page 4
Copyright (c) 2017 OSR Open Systems Resources, Inc.

12. Tools for Driver Quality
In this section, we discuss tools that are available in the Windows Driver Kit to test and validate
drivers. Windows Driver Verifier, OACR/PREfast, and Static Driver Verifier are all discussed, along
with the strengths and weaknesses of each tool and recommendations for the best use of each.

13. Boot, Crash Dump, and Hibernation Processes
A discussion of how Windows starts, including transitions from 16-bit mode. Also, a discussion of the
crash dump and hibernation processes (which are remarkably similar on Windows). Version-specific
differences are also discussed.

14. Windows System Services
How system service calls are implemented in Windows, both in new versions of the OS and
historically. A description of a selection of NtXxxx and ZwXxx functions, and how their use in user-
mode and kernel mode differs.

15. Processes, Threads and Dispatching
In this section, we discuss the role of the Process Manager, including how processes and threads are
instantiated. The major data structures (ETHREAD, EPROCESS) are described. The native system
services for creating processes and threads are also briefly discussed. How dispatching (scheduling)
is performed in Windows.

16. Other Kernel Extensions
An extended discussion of methods, other than those in the I/O domain, of extending the Windows
operating system using software only drivers. This includes a discussion of Object Manager, Process
Manager, and Registry callbacks, including the significant differences in the availability of these
methods among various Windows versions.

Lab: Continue previous labs
 Kernel Extensions

17. Cleanup, Close, and Cancel
Cleanup, close and request cancellation are compared and contrasted. When one might need to
implement support for each in a typical WDM driver is discussed. Guidelines for supporting request
cancellation, including Cancel Safe Queues and in-progress request handling are presented.

18. Windows Virtual Memory
A discussion of Windows virtual memory subsystem, including portions of the Memory Manager and
Cache Manager. Page tables. Paging and page fault handling.

19. The Details of I/O Completion
In this section, we describe the details of how Windows completes I/O requests, as well as the
correct handling of different types of I/O completion requirements within drivers. This includes a
discussion of how the I/O Manager manages maintains synchronous request handling when
requested by an application, even when a driver performs asynchronous I/O processing. Guidelines
for proper driver implementation are developed and discussed.

Lab: Continue previous lab sessions; Cancel

