
Writing WDM Kernel Mode Drivers for Windows – Lab Edition Page 1
Copyright (c) 2017 OSR Open Systems Resources, Inc.

Writing WDM Kernel Mode Drivers for Windows®

The Windows Driver Modem (WDM) is the native interface that serves as the base for all other Windows

driver models. While most new general-purpose Windows drivers are now (rightly) written using the

Windows Driver Foundation (WDF), understanding WDM is still important for many engineers. These

include engineers who are maintaining older drivers that were written in WDM, as well as those who

use driver models other than WDF that are based on WDM.

The overall goal of this seminar is to provide students with a solid understanding of the WDM core

concepts. This knowledge will allow them to design, develop, and test many types of Windows WDM

drivers, if that is their goal. However, this knowledge will also provide them with deep knowledge of

native I/O interface used by Windows, and with them allow them go on to learn the implementation

details other WDM-based Miniport architecture (such as StorPort, AVStream, or other types of devices).

Details

Length: 5 days

Format: Lecture and Lab

Target Audience

Engineers who need to understand how to design, develop, maintain or test Windows drivers using the

Windows Driver Model (WDM).

Developers who seek a thorough understanding of the workings of the Windows I/O subsystem, either

in preparation for writing/maintaining a WDM driver or for gaining a stronger understanding of

Windows architecture.

Important, Please Read: This seminar deals strictly with the Windows Driver Model (WDM) and does

not prepare attendees for writing drivers using the Windows Driver Foundation. Most new driver

development for Windows is done using the Windows Driver Foundation and not WDM. Therefore,

most students who need to design or develop new Windows drivers should not select this seminar, but

should rather attend OSR’s Writing WDF Drivers: Core Concepts seminar.

Students who want to learn about writing File Systems for Windows are probably best served by

attending OSR’s Windows Internals and Software Driver Development seminar, and not this seminar.

See “Which OSR Seminar is Right for Me” http://www.osr.com/seminar_choice.html -- If you have any

questions about which seminar will best fit your needs, please contact an OSR Seminar Consultant by

email or phone. We’re here to help!

http://www.osr.com/seminar_choice.html

Writing WDM Kernel Mode Drivers for Windows – Lab Edition Page 2
Copyright (c) 2017 OSR Open Systems Resources, Inc.

Prerequisites

Students attending this seminar must have a good working knowledge of O/S concepts in general (user

mode versus kernel mode, virtual memory concepts, and concurrency issues) and Windows O/S

architecture concepts in particular. Due to the hands-on orientation of this seminar, attendees will be

assumed to be able to use Windows at a user level, including using Visual Studio (VC++). Working

knowledge of the C programming language, and how to read and write to a file using Win32 (CreateFile,

ReadFile, WriteFile) are also assumed.

After This Seminar
This seminar provides you with the necessary information to attend OSR’s Developing File Systems for
Windows seminar.

Seminar Outline

 Introduction
Welcome remarks, seminar goals and objectives, and a brief introduction to Windows driver
architectures.

 Windows Architecture Overview

A brief review of Windows operating system architecture, focused specifically on the details

needed by a WDM driver writer.

 The Windows Device Tree

A description of how the Windows PnP subsystem discovers and enumerates drivers, on both

dynamically enumerable buses (such as PCI and USB) and non-dynamically enumerable Simple

Peripheral Buses (SPBs, such as SPI, GPIO, and high speed serial buses). The role of Function

Drivers, Bus Drivers, and Filter Drivers is discussed. PDOs, FDOs, and Filter Device Objects are

defined. IRPs, I/O Stack Locations, and how requests are sent from driver to driver using

IoCallDriver are all discussed. Synchronous and asynchronous IRP completion. A brief discussion

of completion routines is also included.

 Driver Installation

In this section we discuss how to create installation control files for WDM and standard kernel

mode device drivers. The Ten Most Frequently Used .INF File Sections are discussed.

 Building and Debugging Kernel-Mode Drivers

This section describes how WDM drivers are built using the WDK build environment as well as

the basics of how to setup and use the Windows kernel mode debugger, WinDbg.

 The DriverEntry and AddDevice Entry Points

The two initial entry points in a driver are described. We also provide a description of the

Writing WDM Kernel Mode Drivers for Windows – Lab Edition Page 3
Copyright (c) 2017 OSR Open Systems Resources, Inc.

functions a driver typically calls within each of these routines, and do a walk-through of code

from a sample driver for each of these entry points. PnP and WDM issues.

Lab: Building and Debugging, Driver Initialization (DriverEntry, AddDevice, etc).

 PNP and START_DEVICE

In this module, we take our first overall look at the Windows PnP state machine. Building on

what we learned when we discussed the Device Tree, we describe how the PnP subsystem

interacts with Function and Filter drivers. We describe how to process "bus first" and "function

first" requests, and walk-through example code for handling IRP_MN_START_DEVICE requests.

 Interrupt Levels & Deferred Procedure Calls

In this module, we discuss the all-important concept of Interrupt Request Levels (IRQLs), and the

specific uses that Windows makes of various IRQLs. We also discuss Deferred Procedure Calls

(DPCs) and how they're used in Windows for Interrupt Service Routine completion (DPCforISR).

We also discuss passive-level interrupts and its associated Work Item for ISR.

 Buffer Methods and IOCTL Definitions

In this section, the different ways that requestor data buffers can be described are discussed.

Direct I/O, Buffered I/O and "Neither I/O" are described, compared, and contrasted. Also

discussed is how to define custom Device IO Control Codes (IOCTLs), and how the previously

described buffering methods apply to IOCTLs.

 Serialization

What it means to be "thread safe", and fully re-entrant. Serialization in kernel mode. Spin locks

are defined, and the different types of spin locks are described.

 Dispatching and Completing Requests

This module describes Dispatch Routines including I/O request validation, as well as the basics of

request queuing and completion.

Lab: Request Processing, Buffering and Queuing

 Case Study: Programmed I/O Driver

The HAL functions used by Windows drivers to access them. Review of the flow of an I/O

Request for drivers that directly handle device interrupts.

 Tools for Driver Quality

In this section, we explain the tools and techniques for verifying and testing your driver.

Windows Driver Verifier, SDV, and Code Analysis (PreFast for Drivers) are all discussed.

Writing WDM Kernel Mode Drivers for Windows – Lab Edition Page 4
Copyright (c) 2017 OSR Open Systems Resources, Inc.

 Cleanup, Close, and Cancel

Cleanup, close and request cancellation are compared and contrasted. When one might need to

implement support for each in a typical WDM driver is discussed. Guidelines for supporting

request cancellation, including Cancel Safe Queues and in-progress request handling are

presented

Lab: Static Tools, Driver-to-Driver Communication

 Introduction to Power Management

Windows power management concepts, as well as the responsibilities of the power policy

owner are discussed in this section. Proper handling of power transitions, interactions with PnP,

starting and completing D-IRPs, and dealing with various failure situations are also discussed.

 I/O Completion Details
A very detailed and important discussion of how Windows handles I/O completion. Why it is

necessary to call IoMarkIrpPending and return STATUS_PENDING. When you must either return

STATUS_PENDING or block in the dispatch routine if a completion routine reclaims an IRP with

STATUS_MORE_PROCESSING_REQUIRED.

 Introducing WDF

This module provides a short (about 2 hour) brain-dump of the basics of writing Windows

drivers using the Windows Driver Foundation. General architectural concepts, taxonomy, key

WDF Objects are discussed. The basics of how a WDF driver is constructed is discussed,

including Event Processing Callbacks. WDF driver initialization, including an overview of WDF’s

unified PnP and Power Management implementation. An overview of how I/O requests are

received and processed (WDFQUEUEs, dispatching types, and WdfCompleteRequest). Includes a

brief walk-through of a simple WDF driver.

Lab: Cancel, Power, KMDF Driver Initialization (optional)

